Retrogressive thaw slump susceptibility in the northern hemisphere permafrost region
Makopoulou, Eirini; Karjalainen, Olli; Elia, Letizia; Blais-Stevens, Andrée; Lantz, Trevor; Lipovsky, Panya; Lombardo, Luigi; Nicu, Ionut Cristi; Rubensdotter, Brita Lena Eleonor Fredin; Rudy, Ashley C.A.; Hjort, Jan
Peer reviewed, Journal article
Published version
View/ Open
Date
2024Metadata
Show full item recordCollections
Original version
10.1002/esp.5890Abstract
Mean annual temperatures in the Arctic and subarctic have increased in recent decades, increasing the number of permafrost hazards. Retrogressive thaw slumps (RTSs), triggered by the thawing of ground ice in permafrost soil, have become more common in the Arctic. Many studies report an increase in RTS activity on a local or regional scale. In this study, the primary goals are to: (i) examine the spatial patterns of the RTS occurrences across the circumpolar permafrost region, (ii) assess the environmental factors associated with their occurrence and (iii) create the first susceptibility map for RTS occurrence across the Northern Hemisphere. Based on our results, we predicted high RTS susceptibility in the continuous permafrost regions above the 60th latitude, especially in northern Alaska, north-western Canada, the Yamal Peninsula, eastern Russia and the Qinghai-Tibetan Plateau. The model indicated that air temperature and soil properties are the most critical environmental factors for the occurrence of RTSs on a circumpolar scale. Especially, the climatic conditions of thaw season were highlighted. This study provided new insights into the circumpolar susceptibility of ice-rich permafrost soils to rapid permafrost-related hazards like RTSs and the associated impacts on landscape evolution, infrastructure, hydrology and carbon fluxes that contribute to global warming. Retrogressive thaw slump susceptibility in the northern hemisphere permafrost region