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Abstract

Mean annual temperatures in the Arctic and subarctic have increased in recent

decades, increasing the number of permafrost hazards. Retrogressive thaw slumps

(RTSs), triggered by the thawing of ground ice in permafrost soil, have become more

common in the Arctic. Many studies report an increase in RTS activity on a local or

regional scale. In this study, the primary goals are to: (i) examine the spatial patterns

of the RTS occurrences across the circumpolar permafrost region, (ii) assess the

environmental factors associated with their occurrence and (iii) create the first

susceptibility map for RTS occurrence across the Northern Hemisphere. Based on

our results, we predicted high RTS susceptibility in the continuous permafrost

regions above the 60th latitude, especially in northern Alaska, north-western Canada,

the Yamal Peninsula, eastern Russia and the Qinghai-Tibetan Plateau. The model

indicated that air temperature and soil properties are the most critical environmental

factors for the occurrence of RTSs on a circumpolar scale. Especially, the climatic

conditions of thaw season were highlighted. This study provided new insights into

the circumpolar susceptibility of ice-rich permafrost soils to rapid permafrost-related

hazards like RTSs and the associated impacts on landscape evolution, infrastructure,

hydrology and carbon fluxes that contribute to global warming.
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1 | INTRODUCTION

In recent decades, mean annual air temperatures in the Arctic and

subarctic have increased 2–4 times faster than the global average

rate, and warming is likely to continue at faster rates in the current

century (IPCC, 2021; Rantanen et al., 2022; Snyder, 2016). Permafrost

is defined as ground (soil and rock) that remains at or below 0�C for at

least two consecutive years (Brown, Sidlauskas, & Delinski, 1997).

Since 1980, monitoring the thermal state of permafrost has provided

clear evidence of warming and thawing throughout permafrost

regions (Biskaborn et al., 2019; Harris et al., 2009; Pastick et al., 2015;

Romanovsky, Smith, & Christiansen, 2010; Smith et al., 2022; Wang

et al., 2015). However, permafrost degradation increasingly occurs

also in areas of cold permafrost. Rising ground temperatures have

been associated with increases in the frequency and intensity of

disturbance associated with thawing permafrost (Fraser et al., 2018;

Lewkowicz & Way, 2019; Nitze et al., 2020). The potential impacts

of permafrost thaw are most significant in areas with high ground
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ice content. The thawing of ice-rich permafrost can affect local

landscapes, ecosystems and the global climate due to the release

of soil carbon into the atmosphere (Kokelj & Jorgenson, 2013;

Turetsky et al., 2020).

Permafrost thaw-related hazards have been studied across the

Arctic from local to regional scales by Bartleman et al. (2001), Lantz

et al. (2009), Jones, Pollard, & Jones (2019) and Nitze et al. (2020).

One of the most common permafrost hazards is retrogressive thaw

slumps (RTSs) (Figure 1). RTSs form on destabilized slopes that have

been affected by mass wasting, erosion, wave action, wildfires or

other activities that lead to the exposure and melt of ground ice. This

results in the collapse of the thawed soil and the initiation of RTS

(Burn & Lewkowicz, 1990). RTSs involve soil movement and

vegetation displacement, which result in a large scar area (a horseshoe

or a bowl-shaped depression with a steep headwall) (Huebner &

Bret-Harte, 2019). RTSs are characterized by the exposure of ground

ice in ice-bearing permafrost deposits, and they are one of the most

dynamic thermokarst landforms in the Arctic (Bernhard et al., 2020;

Malone et al., 2013). They usually occur on slopes with fine-grained

ice-rich sediments (Lacelle, Bjornson, & Lauriol, 2010), and many are

found along rivers, lakeshores or coastal bluffs, where coastal or

fluvial processes provide the initial slope and exposure for permafrost

to thaw (Swanson, 2014). Previous studies have pointed out that

RTSs occur primarily after warm and rainy summers due to the deep

active layer thaw in permafrost soils (Burn & Lewkowicz, 1990;

Kokelj, Tunnicliffe, Lacelle, Lantz, Chin, & Fraser, 2015; Lewkowicz &

F I GU R E 1 a) Retrogressive thaw slump (RTS) in Paulatuk region, Northwest Territories, Canada, (photo: Trevor Lantz) b) RTS located near
the bank of Linnéelva River, close to Russekeila, Svalbard. The hatched lines show back-scarps (photo: Lena Rubensdotter), and c) RTS on Banks

Island, Canada.
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Way, 2019). Once RTSs are initiated, they may continue to develop

for many years, and at some sites, growth may continue for decades

(Burn & Lewkowicz, 1990). Segal, Lantz, & Kokelj (2016) and

Lewkowicz & Way (2019) have pointed out the rapid intensification

of slumps in recent decades and suggested that climatic and terrain

factors are important influences.

Retrogressive thaw slumps tend to occur in clusters, and it is not

uncommon to find several in a small area (Jones, Pollard, &

Jones, 2019). RTSs are local permafrost hazards, but when present

in high concentrations, they can affect geomorphology, hydrology,

ecology, Arctic infrastructure development and biogeochemistry

from local to regional scales (Hjort et al., 2022; Kokelj et al., 2021;

Nitze et al., 2018; Patton, Rathburn, & Capps, 2019). RTSs disrupt the

surface organic cover and promote seral vegetation adapted to

warmer and less organic soils (some herbs and deciduous shrubs)

at the expense of evergreen shrubs, lichens, some mosses (Bartleman

et al., 2001) and alder growth (Lantz et al., 2009). Additionally, RTS

formation exposes soil organic matter to degradation and thus

increases carbon fluxes that contribute to global warming (Ramage

et al., 2018; Turetsky et al., 2020).

The distribution of RTSs has previously been modelled only at

local and regional scales (e.g., Rudy et al., 2016; Yin et al., 2021), and

broad-scale assessments are lacking. Consequently, the spatial

and temporal characteristics of RTS occurrence are still unclear, and

a more thorough evaluation of the factors controlling landscape

sensitivity to thaw slumps is required. To address this, we integrate

previous and new information on the circumpolar distribution of RTSs

and use these data (i) to study the spatial patterns of the occurrence

of RTSs across the circumpolar permafrost region, (ii) to assess the

environmental factors that are related to their occurrence and (iii) to

create the first susceptibility map for RTS occurrence across the

Northern Hemisphere. We use statistical modelling techniques to

correlate an extensive dataset of confirmed RTS occurrences to

high-resolution geospatial data on relevant environmental conditions

and predict the susceptibility of RTS occurrence in the Northern

Hemisphere.

Our combined results thus supply information about the environ-

mental factors that control the susceptibility of RTS occurrences and

provide new spatial insights into the susceptibility of circumpolar

permafrost to RTS development.

2 | DATA AND METHODS

2.1 | RTS inventory

RTS observations (n = 19,227, see Supplementary material), across

the permafrost region (Figure 2) were compiled from published

inventories in online databases and articles and by visual interpreta-

tion of the Arctic Imagery (ESRI, 2020) with a 15-m resolution for

the circumpolar region in the ArcGIS Pro software (version 3.1.0).

The Arctic imagery was chosen because of its consistent availability,

especially for the previously unmapped Siberian coast (Sakha region),

where visual interpretation was performed to fill gaps in circumarctic

data coverage.

The dual-observe approach was applied for the visual interpreta-

tion, where first, authors (EM and LE) identified RTSs according to

their morphologic characteristics (e.g., shape and scar zone). To

F I GU R E 2 Distribution of the compiled retrogressive thaw slumps n = 19,227 (RTS) and non RTS across the permafrost region (permafrost

zones based on Brown, Sidlauskas, & Delinski, 1997).
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achieve a homogenous dataset over a vast area, a standardized

criterion was that mapped RTSs should be visible at a scale of

1:10.000. Second, the final RTS dataset was reviewed by the author

(EM). Most of the observations in the literature and databases were

originally mapped between 1980 and 2020, with few exceptions from

the 1950s. The observations that were in polygon shapefiles were

converted to points with the tool Feature To Point in ArcGIS Pro

based on polygon centroid.

To facilitate presence-absence modelling (see Figure 2), a random

sample of absences (non-RTS) was drawn from inside the Brown,

Sidlauskas, & Delinski (1997) permafrost region (all permafrost zones).

First, a random sample of 17,000 points was created in ArcGIS Pro

at a minimum distance of 1,000 m from each other and from the

presence points. This distance is meant to ensure that locations

potentially associated with presence instances do not enter the model

and act as noise in the classification process. This procedure was

further refined in a subsequent step, where fine-resolution satellite

imagery in ArcGIS Pro was employed to verify that no RTSs were

present in the vicinity (500 m search radius) of the sampled locations.

To avoid pseudo-replication, we ensured that each 30-arc-second

(� 1 km2) grid cell containing more than one observed RTS was only

used once in the modelling (see section 2.3.1.). The dataset consisted

of 28,931 30-arc-second (� 1 km2) grid cells (RTS-present = 11,931;

and RTS-absent = 17,000).

2.2 | Environmental predictors

Several geospatial datasets with 30 arc-second spatial resolution were

used to characterize environmental conditions affecting the circumpo-

lar occurrence of RTSs. We performed preliminary modelling with

different physically relevant data on topography, soil and climate

variables to determine which parameters performed most robustly in

spatial prediction. The investigated variables included soil conditions

(Poggio et al., 2021; Shangguan et al., 2017), climate (Karger

et al., 2017), topography (Amatulli et al., 2020), vegetation and ground

ice conditions (Brown, Sidlauskas, & Delinski, 1997; Strauss

et al., 2021). Based on pre-analysis, we excluded variables (see Supple-

mentary Material Table S1) that had either an overly strong correlation

with a similar variable (e.g., mean annual air temperature and thawing

degree-days) or negligible effect in initial models. The final environ-

mental variables selected for the modelling are shown in Table 1.

Climate variables were calculated for the climate normal period

1981–2010. Freezing and thawing degree days (FDD and TDD,
�
C-days) were calculated as the annual sums of monthly average

temperatures below and above freezing, respectively. Following Aalto

et al. (2018), rainfall was calculated as the annual sum of precipitation

for months with an average air temperature over 0�C.

In addition to the climatic variables, one topographic variable

(slope angle) and two soil variables (i.e., fine sediment [clay to silt

fraction] content and dry bulk density of the soil) were also used in

the susceptibility modelling. The mean of slope angle was computed

using the Geomorpho90m dataset (resolution = 3 arc-second; �90 m)

aggregated to the used 30 arc-second spatial resolution (Amatulli

et al., 2020). Soil (unconsolidated sediment) properties are very impor-

tant for RTS development because they affect the frost susceptibility,

water transport capacity and hence indirectly the ground ice content

of the sediments. In fine-grained materials, both frost susceptibility

and ground ice content are typically higher than in coarse materials

(e.g., Kokelj & Burn, 2005). Another soil property was bulk density,

which was considered to account for the overall compactness of the

soils. Low values indicate loose soils with abundant organic content,

while high values are found in dense silty and clayey soils with less

pore space (O’Connor et al., 2020). The soil variables were obtained

from the SoilGrids250m 2.0 database with the definition that “soil” is
up to 2 m thick unconsolidated material (Poggio et al., 2021). We

computed average soil property values for the depth 0–200 cm based

on the values provided for six depth intervals and aggregated the

average of the original 7.5 arc-second data to 30 arc-second

resolution.

2.3 | Statistical modelling

2.3.1 | Sampling design

The compiled RTS observations have a relatively large extent across

the circumpolar area, yet in some regions, the RTSs are more clustered

than in others. Such spatial structures in the modelling data can lead

to overoptimistic estimates of model performance, e.g., in the case of

unaccounted spatial autocorrelation (Schratz et al., 2019). On the

other hand, randomly selected absences are evenly distributed. To

control these different spatial structures and the likely strong spatial

autocorrelation among the presences, a repeated distance-based

random sampling was performed. Altogether, the models were run

10 times with different sub-samples in which spatial autocorrelation

and the imbalance of sampled presences and absences were

constrained (see below for details). This procedure ensures that any

residual spatial structure in the data can be perturbed or even broken

down to the point of removing its influence on model performance

(e.g., Moreno et al., 2023).

At each modelling round, the zerodist2 function in the R package

sp (Pebesma, 2018) was used with a 2-km search distance to remove

observations in adjacent grid cells in the entire dataset. Before these

omissions were made, the dataset was shuffled to ensure that differ-

ent samples were selected at each round. The rationale was to make

the spatial structures of clustered presences and evenly distributed

absences more similar. On average, roughly 19,700 observations

remained at each round.

T AB L E 1 The environmental predictors used in the modelling.

Environmental
predictors Source data Reference

Thawing degree

days (TDD,
�
C-days)

CHELSA Climate data Karger et al., 2017

Freezing degree

days (FDD,
�
C-days)

CHELSA Climate data Karger et al., 2017

Rainfall (mm) CHELSA Climate data Karger et al., 2017

Slope angle (
�
) Geomorpho90m Amatulli et al., 2020

Fine sediment

content (g/kg1)

SoilGrids250m 2.0 Poggio et al., 2021

Bulk density

(bd, g/cm3)

SoilGrids250m 2.0 Poggio et al., 2021
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Next, zerodist2 was used to randomly split the data into model

calibration and evaluation datasets. At each round, random samples

used for the model calibration datasets were drawn so that the

observations were at least 10 km apart from the observations in the

corresponding evaluation datasets. This procedure was performed to

increase the spatial independence of calibration and evaluation

datasets, which are crucial in validating the models’ predictive

performance outside of the spatial setting of the calibration data

(Hao et al., 2020; Valavi et al., 2021). A relatively conservative

distance was used so that this procedure did not omit too many of

the identified RTSs. Initially, 90% of observations were randomly

assigned as calibration data, and 10% were reserved for evaluation.

By doing this, we aimed to use a maximum amount of data to train

the models, and thus reduce the need to extrapolate the model

outside the realized predictor space (Roberts et al., 2017). On

average, 1,566 identified RTSs (presences) and 14,075 non-RTSs

(absences) were selected at each of 10 sampling rounds to form

calibration datasets, and an average of 358 presences and 1,600

absences were in evaluation datasets.

The apparent class imbalance in the obtained datasets (low preva-

lence of presences, Valavi et al., 2022) could decrease the predictive

performance of modelling (Valavi et al., 2021, 2022) and produce

artificially significant error estimates (Roberts et al., 2017). For this

reason, an equal sampling was also performed (Brenning, 2005). The

technique has been shown to improve prediction performance and

reduce overfitting in statistically based modelling (Valavi et al., 2021)

and in defining optimal threshold values to produce binary predictions

(Liu et al., 2005; Zhang et al., 2019). In this procedure, an equal num-

ber of absences and presences were selected at each round in both

calibration and evaluation datasets. The number of observations in

both classes was equal to the presence in the random distance-based

samples. Thus, on average, 3,200 presences and absences were used

in the final model calibration and 670 presences and absences were

retained for evaluation.

2.3.2 | Modelling techniques

The occurrence of RTSs was analysed using a generalized boosting

model (GBM) with the BIOMOD2 package (Thuiller et al., 2009, ver-

sion 3.5.1) in R Statistics software version 4.1.2 (R Core Team, 2022).

GBM was selected based on preliminary analyses where commonly

applied techniques (Aalto, Harrison, & Luoto, 2017; Aalto &

Luoto, 2014; Karjalainen et al., 2020; Leppiniemi et al., 2023; Rudy

et al., 2016; Yin et al., 2021), were compared based on evaluation

metrics (see Figures S1-S3 and Table S2 in the supplementary

material).

GBM is a machine learning method that combines many classifi-

cation trees to form a model with improved prediction accuracy,

which in some cases can address overfitting (Elith et al., 2005). With

GBM, we used 5,000 trees, interaction depth = 5, shrinkage = 0.05

and bag fraction = 0.75. A sensitivity analysis was performed by

testing a different maximum number of trees (1,000–8,000) and

shrinkage values (0.005, 0.01 and 0.05), with the aim of finding

optimal settings for the influence of individual trees in the final model

(Elith, Leathwick, & Hastie, 2008). A relatively fast rate was found to

yield the most balanced predictive performance.

To evaluate the overall performance of the model, the receiver

operating curve (ROC) and true skill statistics (TSS) were

implemented. ROC analysis is a common graphical approach for

analysing the performance of a binary classifier, and it uses a pair of

statistics – true positive rate and false positive rate – to characterize a

classifier’s performance (Tan, 2009). TSS is an accuracy measure that

considers both omission and commission errors and success because

of random guessing and ranges from �1 to +1, where +1 shows

perfect agreement (Allouche, Tsoar, & Kadmon, 2006). For ROC and

TSS, sensitivity and specificity values were also calculated. Sensitivity

values are the percentage of presences correctly predicted in the

model, and specificity values are the percentage of absences correctly

predicted in the model (Guisan, Thuiller, & Zimmermann, 2017).

To examine the relative contributions of the environmental

factors, the variable importance values were calculated. In addition,

response curves for each predictor were computed to examine their

effect on the predicted RTS probability. We normalized the predicted

probabilities so that the values from each of the 10 runs were inter-

nally normalized between 0 and 1. The shape of the response curve is

representative of the statistical relationship between the geomorphic

process (RTS) and the predictor variable (environmental variables)

when other variables are held constant (Hjort & Luoto, 2011).

2.3.3 | Susceptibility maps

To create the susceptibility map, we classified the predicted

probabilities of RTS occurrence (the average of 10 model runs) into

susceptibility zones using the 50th, 75th, 90th and 95th percentiles,

which represent the areas with very low <50, low 50–75, medium

>75–90, high >90–95 and very high >95 probability for future

disturbance, similar to Goetz et al. (2015), Rudy et al. (2016) and

Yin et al. (2021). The analysis is based on the assumption that areas

that are predicted as susceptible to RTSs will have terrain conditions

comparable to those in areas where RTSs have already occurred.

3 | RESULTS

3.1 | Environmental factors affecting RTSs
occurrence

Based on the analysis of variable importance (Table 2), the most criti-

cal variables for the RTSs occurrence are TDD, FDD, rainfall and bulk

density. The response curve for TDD (Figure 3) shows that the

highest probability for RTS occurrence is found between approxi-

mately 100 and 1,100�C-days. In the case of FDD, the highest

probabilities occur approximately between 1,900 and 5,800�C-days.

Rainfall’s response curve indicates optimal conditions where precipi-

tation is below 500 mm, whereas the bulk density shows the highest

probability within a quite narrow range between 90 and 105 g/cm3.

The response curve for slope angle shows that RTSs are located

most likely on slopes below 20
�
, but also that probability in

completely flat areas as well as on steep slopes (>25
�
) is low.

Additionally, the response curve for fine sediments shows that the

RTSs occur where the fraction of fine sediments is above approxi-

mately 650 g/kg 1.
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Based on the 10-fold distance-based random cross-validation,

the trained GBM models showed robust predictive performance

with spatially semi-independent evaluation datasets (Table 3).

Prediction accuracy, as indicated by ROC and TSS values, was

similar across training and evaluation data and showed a small

standard deviation across the 10 model runs. More specifically,

the average sensitivity and specificity values show that the

models correctly predicted the presence of RTS in the evaluation

datasets in approximately 92% of cases and their absence in 83%

of cases.

T AB L E 2 Variable importance over 10 modelling runs for the generalized boosting model (GBM). The abbreviated predictors are freezing
degree-days (FDD) and thawing degree-days (TDD).

GBM TDD FDD Rainfall Bulk density Slope angle Fine sediments

Average 0.41 0.33 0.20 0.17 0.11 0.07

Standard Deviation 0.03 0.02 0.02 0.03 0.04 0.01

F I GU R E 3 Response curves for the environmental variables used in the generalized boosting model. The thick black line represents the mean
values over 10 model runs, and the blue band depicts one standard deviation above and below the mean. The abbreviated predictors are freezing
degree-days (FDD), and thawing degree-days (TDD). Response curves for the auxiliary modelling methods used in the pre-analyses are presented
in the supplementary material (Figures S4, S5 and S6).

T AB L E 3 Statistical evaluation metrics for the receiver operating curve (ROC), true skill statistics (TSS), sensitivity and specificity for the
training and evaluation datasets based on 10 modelling runs of the generalized boosting model (GBM).

Training data Evaluating data Cutoff Sensitivity % Specificity %

ROC TSS ROC TSS ROC TSS ROC TSS ROC TSS

GBM average 0.93 0.75 0.93 0.74 0.52 0.52 92.28 92.30 82.93 82.77

GBM Standard

deviation

0.004 0.009 0.007 0.01 17.21 15.33 1.02 0.79 1.33 1.24
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3.2 | Circumpolar susceptibility map

High RTS susceptibility was predicted extensively in the continuous

permafrost regions, while discontinuous permafrost regions typically

had low to very low susceptibility values. The most extensive areas of

very high susceptibility were found across the Brooks Range in Alaska,

the Northwest Territories of Canada (Banks Island, Victoria Island,

parts of Ellesmere Island, Mackenzie Bay, Franklin Bay and Darnley

Bay), North-western Passages show medium to high susceptibility

in some parts of Baffin Island and Kativik territory, the eastern coasts

of Greenland, Svalbard, Yuzhny Island, Yamal, Gydan and Taymyr

Peninsulas, the northern Siberian coast and Chukotka Peninsula.

Outside the Arctic, very high susceptibility was also predicted in the

Qinghai-Tibetan Plateau (Figure 4a).

4 | DISCUSSION

With statistical modelling, we effectively identified key factors that

have a significant impact on RTS activity, which can help to better

understand their circumpolar distribution and the underlying causes

of their occurrence (Elia et al., 2023). Our results showed that RTS

occurrence at a circumpolar scale can be reasonably well predicted

with climatic (FDD, TDD, rainfall), soil (bd and fine sediment fraction)

and topographic (slope angle) variables. Interestingly, thaw-related

variables (TDD and rainfall) were highlighted in the results and had

more distinct thresholds when compared to FDD, thus showing the

importance of summer conditions for the occurrence of RTSs

(Mekonnen et al., 2021; Peng et al., 2018). Previous studies have

shown similar results for RTSs at local and regional scales

F I GU R E 4 Susceptibility maps for retrogressive thaw slump (RTS) occurrences based on generalized boosting model for (a) circumpolar
permafrost area, (b) northern Alaska and (c) Yamal and Gydan peninsulas. Also shown are the compiled retrogressive thaw slumps (b and c).
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(e.g., Lewkowicz & Way, 2019; Nicu et al., 2023; Rudy et al., 2016;

Yin et al., 2021). For example, Yin et al. (2021) reported that climatic

variables, TDD and rainfall, were the two most important factors for

the occurrence of permafrost hazards in the Qinghai-Tibetan Plateau.

Luo et al. (2022) confirmed that the increase in the RTS occurrence in

the Qinghai-Tibetan Plateau mainly occurred during the warm season

in 2010 and 2016 and is likely due to high air temperatures during the

thawing season. Furthermore, Kokelj, Tunnicliffe, Lacelle, Lantz, and

Fraser (2015) demonstrated that an increase in rainfall accelerated

slump activity in the Peel Plateau and may have been an essential

factor driving increased slump activity in many parts of the Arctic and

subarctic of northwestern Canada.

Although climatic factors were the most important variables of

RTS occurrences in our study, the results indicated that soil properties

were also central in depicting suitable conditions for occurrence. Soil

dry bulk density was used to characterize the overall compactness of

the soils and it ended up being an important variable in the

model – second only to the climatic factors FDD, TDD and rainfall. In

this study, the role of slope angle was also highlighted, and the

response curve (Figure 3) showed that the suitable slopes should not

exceed 20 degrees. Lacelle et al. (2015) studied the distribution of

RTSs in the Richardson Mountains and concluded that RTSs were more

likely to occur on ice-rich moraines with slopes of 8–12 degrees. Simi-

larly, Rudy et al. (2016) explored the effect of terrain variables on the

occurrence of permafrost hazards in two locations on Melville Island

and one location on Ellesmere Island and concluded that permafrost

hazards commonly occurred on slopes between 4 and 15 degrees.

Fine sediment content had a moderate importance in the models,

but RTS probability showed a substantial increase with higher fine

sediment contents (Figure 3). This finding is consistent with Jones,

Pollard, & Jones (2019) who found that RTSs are abundant in regions

with very fine-grained marine deposits, which are prone to the growth

of segregation ice (Kokelj & Burn, 2005). The response curves indi-

cated a clear optimal bulk density range (90–105 g/cm3) for suitable

conditions. Typically, these kinds of values are found in organic

materials, but the values here should be interpreted cautiously. This is

because we also included the very low-density surface layer of the soil

(0–5 cm) from the SoilGrids data, which strongly lowered the average

for the used 0–200 cm interval. The predicted optimal range is argued

to represent soils that are denser than organic soils but still not

extremely dense, clayey soils that could limit ground ice accumulation.

For example, Kokelj et al. (2017) demonstrated that thaw slumps

occurred in ice-marginal hummocky moraines, but were also present

in glaciofluvial, glaciolacustrine and isostatically uplifted glaciomarine

deposits.

This study employed statistical modelling techniques to create

the first RTS susceptibility map in the Northern Hemisphere based on

available environmental datasets. The results provided information

about the environmental factors that affect the susceptibility of RTS

occurrence and may enable us to better understand how RTS activity

responds to a changing climate and permafrost thaw at a circumpolar

scale. Liu et al. (2024), highlighted that RTS activity is well connected

with warming temperatures and in the Arctic is 1.5 times higher than

in the Third Pole. Our susceptibility map indicated high susceptibility

in many regions where previous studies have documented increased

RTS activity (Kokelj et al., 2017; Leibman, Nesterova, &

Altukhov, 2023; Mu et al., 2020; Segal, Lantz, & Kokelj, 2016;

Young et al., 2022). More specifically, our susceptibility map con-

curred with the findings of Ramage et al. (2018) that RTSs have strong

preconditioning across the Yukon Coast, where their occurrence has

increased by 73% between 1952 and 2011. Lewkowicz & Way (2019)

pointed out that RTS initiation rates increased on Banks Island and

provided evidence that continuous permafrost areas can be vulnera-

ble to changing climatic conditions which also aligns with our results.

In the Qinghai-Tibetan Plateau, RTS activity has rapidly accelerated in

the ice-rich alpine permafrost regions (Luo et al., 2022; Xia et al.,

2022), which showed very high susceptibility in our study (Figure 4a).

Based on the predicted high susceptibilities, RTSs can be found or are

expected to be found in discontinuous permafrost regions across the

Qinghai-Tibetan Plateau in the future.

Our susceptibility map indicated high to very high susceptibility in

the eastern, central and western Brooks Range and foothills of

northern Alaska (Figure 4b), where we have observations on RTS

occurrences mainly in the central part. The model could not distin-

guish the rocky areas with thin soils in the eastern part of Brooks

Range (Wilson et al., 2015) from the environmental parameters, but it

resulted in low to very low susceptibility in a large part of the Alaskan

Coastal Plain, where extensive RTSs are rare due to unconsolidated

and poorly consolidated surficial deposits in the area with little or no

relief (Wilson et al., 2015). Furthermore, the low density of RTS

occurrence in rolling, thaw-lake–dominated areas is a function of

gentle topographic gradients and thaw truncation or eradication of

ground ice by thermokarst during the early Holocene warm period

(Burn, 1997; Murton, 2001). In Mackenzie Bay and Mackenzie

Mountain foothills, our map showed high to very high susceptibility,

which agrees with the findings of Young et al. (2022) that permafrost

mass-wasting has increased substantially from 2004 to 2020 in these

areas due to a combination of increased summer precipitation and fire

disturbances. West of Great Slave Lake, our model indicated medium

to high susceptibility even though there were no available observations

from that area. This area also has generally very gentle slopes <3
�
yet

the climate and soil conditions are suitable for the occurrence of

RTSs or other thermokarst features (Kokelj et al., 2023). Additionally, a

similar situation is in the Chukotka area, where our model provided

very high susceptibility with a limited number of observations available

but favourable climate conditions (TDD values 900�C-days and

FDD values from 3,600 to 4,000�C-days approximately). Finally, the

susceptibility map showed very high susceptibility in the Yamal and

Gydan peninsulas (Figure 4c), which aligns with the used observations

and results in Leibman, Nesterova, & Altukhov (2023).

Despite the fact that RTSs typically have a size of roughly 10 ha,

with some exceptions reaching up to 1 km2 (Nitze et al., 2021), our

analysis showed that their circumpolar modelling was possible using

openly available geospatial datasets with circumpolar coverage. GBM

was effective at predicting RTS susceptibility in both training and

spatially semi-independent evaluation datasets with an average ROC

value of 0.93, which was considered excellent (Swets, 1988). The vari-

ation between modelling runs was relatively low, as indicated by the

small standard deviation, even though only 10 modelling runs were

performed, and as such indicative of stable model performance. TSS

values were lower for both the training and evaluation datasets. The

models showed high sensitivity, correctly predicting on average 92%

of RTS presence observations, but the lower specificity values of 83%

indicated more frequent commission errors, i.e., absences predicted as
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presences (Allouche, Tsoar, & Kadmon, 2006). As a result, predicted

susceptibility is likely too high over some regions with no

documented RTSs.

Regardless of the high ROC and TSS values indicating the

reliability of this study, there were two additional factors that affected

the model performance. The first factor was the lack of available

observations in some regions. Our initial aim was to compile as com-

prehensive a dataset as possible of available RTS observations across

the Northern Hemisphere permafrost region, to facilitate the training

of a model that could learn all possible environmental conditions for

RTS occurrence and thus be transferable in space. However, due to

unavailable data in some regions, there may be environmental condi-

tions in which RTSs occur but were not represented by the modelling

data. This can hinder model transferability to unstudied regions and

cause increased prediction uncertainty (see Supplementary Material

Figure S7[CV]). Owing to our aim to maximize the data used in

modelling, we did not retain separate regional datasets for validation

purposes. Instead, we performed the distance-based random cross-

validation that allowed for using the entire circumpolar RTS compila-

tion while also enabling spatially semi-independent evaluation

datasets with which predictive performance was assessed.

It should be mentioned that the distance constraint used to

separate calibration and evaluation datasets (10 km) was relatively

short and might have incorporated some spatial autocorrelation that

influenced the modelling and produced slightly over-optimistic evalua-

tion statistics. However, the selected threshold was necessary to

avoid losing large amounts of observations from the model training

data. The evaluation results were comparable to other previous

modelling studies for RTSs (Rudy et al., 2016; Yin et al., 2021) and

in modelling of other permafrost and periglacial landforms more

generally (e.g., rock glaciers, palsas, sorted circles, pingos, ice-wedge

polygon distribution; Brenning & Trombotto, 2006; Marmion

et al., 2008; Hjort et al., 2014; Azócar, Brenning, & Bodin, 2017;

Karjalainen et al., 2020).

Further development of spatial RTS susceptibility models would

benefit from more accurate (e.g., spatial and temporal accuracy) data

on climate and ground conditions but also sedimentary history. For

example, the local Quaternary history (e.g., the development of

sediment layers and ground ice) was not well considered by our final

model. We explored the inclusion of coarse-resolution ground ice

(Brown et al., 2002) and Yedoma (Strauss et al., 2021) data, but these

theoretically central determinants had a low contribution to the

models. This was presumably owing to the low thematic (only a few

ground ice classes) and spatial accuracy of the Brown et al. (2002)

data. Consequently, new high-resolution datasets on ground ice

content at the circumpolar scale would be important in the develop-

ment of predictive RTS susceptibility models (Lacelle et al., 2015;

Lewkowicz & Way, 2019). Time series data and data on summer

climate extremes could also be important as particularly warm or wet

summers contribute to the abrupt thaw of ice-rich permafrost and the

development of RTSs (Kokelj, Tunnicliffe, Lacelle, Lantz, Chin, &

Fraser, 2015; Lewkowicz & Way, 2019). Another potential

improvement could come from the use of high-resolution satellite

images and radar data, through automated RTS mapping procedures

(e.g., Bernhard, Zwieback, & Hajnsek, 2022; Huang et al., 2022, 2020).

The susceptibility map produced in this study can be used for

estimating or identifying geohazard potential because RTSs rapidly

degrade large volumes of ice-rich permafrost and transport sediments

from slopes to downstream environments (Kokelj & Jorgenson, 2013;

Lantuit et al., 2012). Mass wasting processes may influence the

stability of infrastructure (Kokelj & Jorgenson, 2013; Luo et al., 2019;

Hjort et al., 2022), contribute to the release of organic carbon and

nutrients and the displacement of large-volume sediments that can

affect aquatic ecosystems by generating alterations in the water

quality of nearby lakes and streams (Kokelj & Jorgenson, 2013;

Kokelj et al., 2021; Ramage et al., 2017; Lewkowicz & Way, 2019),

vegetation and soils (Khomutov & Leibman, 2014; Lantz et al., 2009;

Segal, Lantz, & Kokelj, 2016). Thus, the susceptibility map may provide

new insights into the quantitative assessments of damage to Arctic

infrastructure, risk evaluation on the sustainable development of

Arctic communities and assessments of the approximately 180,000

registered cultural heritage sites in the Arctic (Andrews et al., 2016;

Nicu & Fatori�c, 2023). Moreover, the present circumpolar RTS

susceptibility model can lay the foundation for future multi-hazard

(RTS and thermo-erosion gullies and more) susceptibility models

(Nicu et al., 2023) for the Arctic region.

5 | CONCLUSIONS

We compiled an unprecedented dataset of RTS observations and

modelled the susceptibility of RTSs using climate, soil and topography

data across the permafrost region in the Northern Hemisphere. We

conclude that under the current climate, RTSs can be found across

the Northern Hemisphere, from the Brooks Range in Alaska and

moving towards to Yukon Coast, to Mackenzie Bay in Canada, to

Banks Island, northwest of Victoria Island, along the North-western

Passages to all along the northern part of the Siberian coast

(Yamal, Gydan, Taymyr, Sakha and Chukotka regions) and last to

Qinghai-Tibetan Plateau. Based on our susceptibility model, continu-

ous permafrost environments with suitable thaw season conditions

are highly susceptible to RTSs across the Arctic, while isolated and

sporadic permafrost generally have low susceptibility. Moreover, bulk

density and slope angle also showed a relatively strong contribution

to the occurrences of RTS. The statistical technique used in our

analysis has the potential to predict the circumpolar susceptibility for

RTS occurrence using openly available geospatial datasets with good

to excellent classification accuracy. Local-scale prediction accuracy is

limited by the lack of circumpolar data on ground ice content and

surficial geology, as well as by the uncertainties in the currently

available soil property data.
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