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A B S T R A C T   

Cultural heritage is the foundation upon which global and historical values are based on. It connects us to the legacy 
left by our ancestors and identifies who we are as part of the modern society. Globally and specifically in the 
northeastern Romania, the landscape where cultural heritage sites were built on is constantly evolving due to mass 
wasting processes. Among these processes, landslide and gullies can disrupt the gravitational equilibrium directly or 
around these sites, threatening their very existence and our capacity to pass them on to future generations. Because 
landsliding and gullying are stochastic processes, the use of spatial statistics has often been employed to map lo
cations at risk. In this work, we make use of advanced spatial Bayesian statistics to model landslide and gully erosion 
susceptibilities, separately. And, we ultimately combine these two outputs into a unified multi-hazard susceptibility 
model which we cross with the known cultural heritage sites in a study area close to the city of Iaşi, in Romania. 
Specifically, we implement a Bayesian version of a Generalized Additive Model (GAM) which assumes that the two 
separate landslide and gully presence/absence distributions to behave according to a Bernoulli probability dis
tribution. Contrary to common practices in the literature, the two susceptibility models both feature fixed and 
random effects, including covariates acting at a latent level. We do this to also capture the unexplained but spatially 
coherent distribution of properties not directly included in the model. As for the properties directly expressed as 
covariates, our GAM features terrain attributes obtained from a LIDAR survey, in addition to land use and soil layers. 

The two single models outstandingly perform (AUC  >  0.9) both during the calibration and validation phases. 
This modeling procedure ensures that the probability of occurrence of the two mass wasting processes under 

consideration is well estimated and therefore can be used to reliably plan conservation practices for local cul
tural heritage sites deemed at risk.   

1. Introduction 

Natural hazards do not only pose a threat to infrastructure and human 
lives (Bell and Glade, 2004) but also to the heritage left by our ancestors 
(Nicu, 2017a). Heritage sites are a fundamental part of our ancestry and 
they are a testimony of those that preceded us and the cultural values they 
built; therefore being a symbol for our identities to cling on. Global cul
tural heritage sites are not only being threatened by anthropic (e.g.,  
Aykan, 2018) but also by climate change effects (e.g., Fatorić and 
Seekamp, 2017). At an international level, constant efforts are made to 
detect (Tapete and Cigna, 2019), monitor (Agapiou et al., 2020), and as
sess (Nicu, 2016) mass wasting processes for cultural heritage manage
ment. Other efforts are aimed towards the improvement of adaptation 
measures (Guzman et al., 2020), sustainable development (Guo et al., 
2019) and valorisation (Lorusso et al., 2018) of cultural heritage resources. 

Among surface processes, landslides (Jiao et al., 2019) and gully ero
sion (Nicu, 2019) can damage or even destroy cultural heritage sites. One 
of the first scientific contributions on this topic, Margottini (2004), points 
out at the danger that our heritage sites can face because of landsliding, 
providing a clear and appalling example in the Bamiyan Valley, Afgha
nistan. And, another significant contribution investigates gully erosion 
effects on cultural heritage sites in Arizona, US (Pederson et al., 2006). 
After these, many other examples have been published (Bromhead et al., 
2006), studying and reporting the effects of geomorphological processes 
(e.g., Nicu and Asăndulesei, 2018) on cultural heritage. For instance, slow- 
moving landslides (Hungr et al., 2014) can slowly but steadily disrupt the 
slope equilibrium of built-up areas, damaging old cathedrals (e.g., Capizzi 
and Martorana, 2014) and contribute to the degradation of cultural heri
tage (Nicu, 2017b). As for rapid landslides, they have the potential to 
impact cultural heritage in their runout (e.g., Tarragüel et al., 2012). Gully 
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erosion is also a threat (Kincey et al., 2017) because the intense action of 
gully formation and development through time can mobilize large vo
lumes of soil and damage those sites (Nicu, 2018b). 

Of course other natural agents can pose an equal or even greater 
threat. For instance, weathering (Kuchitsu et al., 2000), tectonic stress 
(Topal and Doyuran, 1997), earthquakes (Okamura et al., 2013), rock falls 
(Mineo and Pappalardo, 2020), sea level rise (Marzeion and Levermann, 
2014), tsunami (Daly and Rahmayati, 2012), freeze-thaw processes (Grossi 
et al., 2007) and floods (Ortiz et al., 2016) are known to have caused and 
will cause damage to cultural heritage (Mäntyniemi et al., 2004). How
ever, the study of these phenomena and their implications are usually 
implemented in a phisically-based framework, involving geotechnical and 
engineering solutions (e.g., Pappalardo et al., 2016). As for geomorpho
logical processes such as landslides and gully erosion, the scientific com
munity commonly relies on statistical models to estimate the probability of 
occurrence (susceptibility, Rahmati et al., 2019; Reichenbach et al., 2018) 
of each of these processes over space (e.g., Arabameri et al., 2019;  
Lombardo et al., 2016b). And, on the basis of this information, territorial 
management institutions can make decisions to protect the heritage sites at 
risk (Tarragüel et al., 2012). The literature on susceptibility modeling of 
geomorphological hazards is rich and it vastly grew together with tech
nological advancements since its early years (Brabb et al., 1972), from 
direct geomorphological mapping (e.g., Verstappen, 1983), to inventory 
analysis (e.g., DeGraff and Canuti, 1988), heuristic (e.g., Leoni et al., 
2009), deterministic (e.g., Bout et al., 2018), statistic (e.g., Frattini et al., 
2010) and data mining (e.g., Lombardo et al., 2015) approaches. The last 
two types nowadays correspond to the vast majority of approaches in 
susceptibility studies. However, on the one hand the data mining appli
cations are growing in numbers and variety – several articles and relative 
comparisons are published every time a new, even slightly, different al
gorithm is proposed from the machine learning community (e.g.,  
Felicsimo et al., 2013; Arabameri et al., 2020) –, while on the other hand, 
the statistically-based literature is much more stable in terms of adopted 
methods. Studies are commonly carried out via Generalized Linear Models 
(Budimir et al., 2015) by assuming that the distribution of a given geo
morphological process is explained via the Bernoulli probability distribu
tion (also referred to as Logistic Regression) (Chang et al., 2017; Lombardo 
and Mai, 2018). Nevertheless, several arguments are still under scientific 
debate. Among these, we particularly address three of them:  

1. The choice of mapping unit is currently a relevant topic, with the 
landslide community increasingly leaning towards a slope unit 
partition (Carrara et al., 1995), especially after automatic tools for 
their calculations have been made freely accessible (e.g., Alvioli 
et al., 2016). Conversely, gully erosion studies are almost unan
imously based on grid-cells (e.g., Arabameri et al., 2018), with very 
few cases adopting unique condition units (e.g., Conoscenti et al., 
2013). Therefore, testing and proving that other mapping units can 
be used is a topic of particular geoscientific relevance.  

2. Even among the Logistic Regression studies, more and more articles 
have been published by using an extension to the simple linear case, 
the Generalized Additive Model framework (GAM; e.g., Goetz et al., 
2015; Gómez Gutiérrez et al., 2009). The GAM approach is much 
more flexible than its linear counterpart and allows for the inclusion 
of any sort of nonlinear effects (Brenning, 2008). Among these ef
fects, Lombardo et al. (2018a) has recently shown that it is possible 
to capture residual effects which are not expressly represented in the 
data other than the latent level. 

3. Another scientific topic of particular interest consists of the in
tegration of more than one hazard phenomenon into the spatial 
prediction (e.g., Chen et al., 2016; Pourghasemi et al., 2020) 

This work investigates the three topics mentioned above. Specifically, 
we aim at testing a slope unit partition to separately explain both landslide 
and gully erosion occurrences in a study area located in the north-eastern 
part of Romania where cultural sites of Neolithic age are widely spread 

(Mihu-Pintilie and Nicu, 2019) and vulnerable to natural hazards 
(Asăndulesei et al., 2020). While doing so, we test a Bayesian version of a 
binomial GAM to predict presence-absence cases for the two geomor
phological processes, by featuring linear properties as well as nonlinear 
ones (e.g., slope steepness), and also expressed at the latent level (e.g., 
effects not directly expressed or defined as covariates, see Bakka et al., 
2018, and Section 3.3). Ultimately, we combine the two separate sus
ceptibilities into a unified susceptibility map and intersect it together with 
the heritage sites. As a result, we propose a modeling tool that not only can 
assess locations where the two separate processes are likely to occur but 
that can also indicate likely heritage sites at risk from both geomorpho
logical processes. 

The article is structured as follows: §2 introduces the study area and 
the three inventories namely, heritage sites, landslides and gully heads; 
§3 describes mapping units, covariates and modeling strategy; in §4 we 
report the results which are discussed in §5; and in §6 we summarize 
our concluding remarks. 

2. Study area 

Bahluieţ river basin is located in the north-eastern part of Romania 
(Fig. 1a) and has a surface of 550km2. Administratively speaking, be
longs to the Iaşi county. The catchment is part of the Moldavian Pla
teau. Due to its main geological features, Bessarabian deposits of Sar
matian age, the area is highly susceptible to landslides and gully erosion 
(Nicu and Asăndulesei, 2018). 

This underlying geology represents the base for initiation and de
velopment of geomorphological processes (landslides and gullies). 
Bessarabian deposits mainly correspond to poorly consolidated clay 
marls with sand intrusions and oolithic limestones. These deposits are 
friable with a simple touch and because of the fine granulation can be 
weathered and mobilized by hydrological agents with relative ease. 
Field experience has shown that landslides primarily trigger in those 
poorly consolidated deposits when slope steepness is high. Conversely, 
our field experience suggest that gullying is favored by lithology, steep 
slopes, lack of vegetation and deforestation. Within the area, gullies 
develop with considerable depths ranging between 20 and 25 m. 

Climatically speaking, the area is exposed to continental temperate 
conditions with alternate heavy rainfall and periods of draught. 
Precipitations range between 500 and 700 mm/year and the average an
nual temperature is between 8.3 9.6 °C. The dominant land use in the area 
consists of arable lands and pastures. The area is intensively used for 
agriculture and animal husbandry; these represent the main economic 
activities in a dominant rural area (Romanescu and Nicu, 2014; Nicu, 
2018a, 2018b). 

Detailed description of the study area can be found in Romanescu 
and Nicu (2014); Nicu (2018b,a), Nicu and Asăndulesei (2018). The 
area is located in one of the most favourable landscape in Eastern 
Europe for the development of Neolithic civilisation (Cucuteni culture). 
As shown by Nicu et al. (2019), the area has a tremendous potential for 
hosting Neolithic sites still undiscovered. Within the basin, 107 Neo
lithic sites are currently known (see Fig. 1b). This inventory was com
piled from the national databases (National Archaeological Registry - 
RAN, Institute of Cultural Memory - CIMEC and the NAtional Heritage 
Institute - INP), Archaeological Registry of Iaşi County (Chirica and 
Tanasachi, 1985), and field trips with archaeologists. 

Both landslides and gully inventories were made initially using LiDAR 
data and then confirming them via field investigations. Overall, 764 
landslides (predominantly classified as debris slides, sensu Hungr et al., 
2014) and 1042 gullies were manually digitised, whose spatial distribu
tions are shown in Fig. 1, panels c and d. As for the corresponding size 
characteristics, these are shown in Fig. 2 where landslides are shown to be 
much larger and gullies are shown to be much more elongated, as ex
pected. Previous studies have argued that gullies and landslides partially 
overlap in the area (Nicu, 2018b); this may imply that they could have a 
faster evolution in the future. 
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3. Material and methods 

3.1. Slope unit and presence/absence assignment 

Mapping units subdivide study areas into geographic polygonal 
structures for which any predictive model makes estimates. As a result, the 
choice of a mapping unit regulates the spatial scale of a given suscept
ibility model. The geoscientific literature reports several mapping units, 
although in terms of number of applications, they essentially boil down to 
two types, grid-cells and Slope Units (Reichenbach et al., 2018). On the 
one hand, grid-cells allow for a fine and regular spatial partition but they 
are inevitably sensitive to all the uncertainties in the geomorphological 
mapping and the process itself. Conversely, Slope Units (SUs) subdivide 
the geographic space into a coarser and irregular spatial partition that is 
closely linked to the geomorphological process under consideration; but, 
they force the user to make some assumptions on how to summarize the 
covariate distribution from the grid-cell to the SU level itself (e.g., Castro 
Camilo et al., 2017). 

The dilemma related to the use of the most appropriate mapping unit 

between grid-cells and SUs starts in the late 90's since the first SU ap
pearance (Carrara et al., 1995). And, it has been investigated in several 
studies since then (e.g., Van Den Eeckhaut et al., 2009). In the landslide 
community, both grid-cells and SU have become more and more common. 
However, in gully erosion studies, grid-cell are the standard with no SU 
ever appeared to the best of our knowledge. For this reason, here we test 
whether SU can be a meaningful spatial partition even in the context of 
gully erosion susceptibility studies. More specifically, to combine landslide 
and gully erosion susceptibility in a single map, we had to choose for a 
common spatial partition, which we opted to be made into SUs. By using 
the software r.slopeunits (Alvioli et al., 2016), we have tested three dif
ferent parameterizations (keeping the flow accumulation and circular 
variance fixed, and changing three combinations of the minimum SU area) 
whose result are not reported here. And, we selected a SU partition with a 
total number of 4978 polygons, with a mean surface of 0.1 km2 and a 95% 
confidence interval of 0.43km2. 

The presence-absence status for landslides and gully heads respec
tively, was assigned with the following criterion: if the landslide or 
gully heads locations intersected a given slope unit, then we assigned a 

Fig. 1. Panel (a) shows the broad geographic context and location of the study area. Panels (b), (c) and (d) summarize the spatial distribution of Neolithic sites, 
landslides and gully heads, respectively. The three inventories are reported in terms of their density over space, this being computed via a 2D density kernel with a 
radius of 5 km. Black points are the locations of each element in the three inventories, associated with each panel. Panel (e) shows an example of a buried (along the 
black solid line) Neolithic site threatened by geomorphic processes acting along the slope. 
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presence condition (or 1) and vice-versa for the absence case (or 0). 

3.2. Covariates 

We start from a large set of morphometric and thematic covariates 
because by planning to implement a latent field in the model (see §3.3), 
we aimed to avoid capturing effects for which we could have a direct 
interpretation. All morphometric covariates originate from a LIDAR 
survey of the study area, from which a high resolution DEM was built 
and resampled at 5 m. The only morphometric exception corresponds to 
the SU areal extent. Thematic properties correspond to the CORINE 
Land Use/Cover (e.g., Feranec et al., 2007) and a soil map from local 
pedological studies at 1:10,000 scale. Both the Land Use and Soil 
classification are detailed in Appendix 1. In addition to those, we 
computed the Euclidean distance from each streamline to the centroid 
of the squared lattice coinciding with the 5 m DEM resolution. 

Also, during fieldwork activities we noted that gully erosion almost 
systematically occurred in the proximity of the paths taken by local sheep 
herding freely through the landscape. Our interpretation was that the 
constant disturbance of the sheep may lead to incise the soil and compact 
it, hence locally modifying the hydraulic properties. We thought of map
ping the actual paths but the resolution of satellite scenes nor available 
orthophotos was not sufficient to see clearly the paths. Overgrazing is 
known to contribute to the development of gully erosion in Iran (Shahbazi 
et al., 2017) and South Africa (Boardman, 2014). Therefore, as an alter
native, we thought of mapping the locations where sheep are held and 
assumed that, if our observation is valid, then a regression model would 
estimate a negative relation between gully occurrences and the distance 
from sheepfolds. As a result, we also computed the Euclidean distance 
from each sheepfold to the centroid of the 5 m lattice. 

Below we report the list of covariates (acronyms in italic) we used 
during the modeling phase:  

1. Distance to sheephold (Dist2Sheep)  
2. Distance to stream (Dist2Stream)  
3. Eastness and Northness (e.g., Lombardo et al., 2018b)  
4. Elevation  
5. Planar (PLC) and profile (PRC) curvatures (Heerdegen and Beran, 

1982)  
6. Relative Slope Position (RSP) (Böhner and Selige, 2006)  
7. Slope steepness (Slope) (Zevenbergen and Thorne, 1987)  
8. Slope Unit area (SU area) (e.g., Amato et al., 2019)  
9. Topographic Position Index (TPI) (Guisan et al., 1999)  

10. Topographic Wetness Index (TWI) (Beven and Kirkby, 1979)  
11. Soil classes in % per SU  
12. Land Use classes in % per SU 

Among these, we chose Dist2Stream because water flowing along 
channels can undercut slopes leading to landslides and provide the es
sential water for soil erosion, hence for gullying. Eastness and Northness are 
known to be a proxy for strata attitude, thus they can represent a vital 
information for debris slides. And, they can also control exposition to the 
sunlight, hence to wetting and drying cycles that could contribute to 
shrink and swell for clays. In turn, these can open up cracks along the soil 
profile where gullies can develop. The Elevation can be a proxy for pre
cipitation. Where topographic barriers exist, rainfall can be confined either 
on one or the other side of the divide. As for the two Curvatures, these have 
been shown to focus or diverge overland flows (see, Ohlmacher, 2007). 
The SU area can control the type of landslides. For instance, if the SU is 
small and narrow, then it is geomorphologically unlikely that shallow 

Fig. 2. Histograms of landslide (blue) and gully (red) size characteristics, reported as the areal extent (in logarithmic scale), maximum length (or the maximum 
distance between any couple of point along the perimeter) and elongation index (calculated as the Max Distance

Area
( )). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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debris slides can develop. The TWI is a property that should indicate the 
terrain tendency of retaining water, hence could provide relevant in
formation for both processes, whereas the TPI can explain the location 
across the landscape where the two geomorphic processes can take place. 

Because of the larger polygonal structure of the SU partition, we 
adopted two criteria to summarize the distribution of the covariate set 
described above: for continuous properties we computed the mean and 
standard deviation values of the grid-cell distribution per SU. For ca
tegorical properties we computed the ratio between the extent of the 
given class within a SU and the extent of the SU itself (then expressed in 
percentage). 

It is important to note that some of the covariates do not share the 
same resolution. This is an issue which is omnipresent in any suscept
ibility model and will remain present until technology would allow us 
to spatially co-register all environmental properties. Out of all the 
mapping units proposed in the literature, non-co-registered properties 
may be a problem specifically for grid-cells, and especially when po
sitional errors affect the landslide inventories (Steger et al., 2016). 
However, for a SU partition, properties with different resolutions have a 
much more limited effect, if any at all. In fact, the SU act as a smoother 
over these problems because the user needs to scale (generally) up the 
resolution of the covariates to the SU resolution. 

Finally, before using the covariates in the modeling phase, we also 
adjust their respective distribution in the same range. We do so by re
scaling each covariate with mean zero unit variance (Paulson, 1942), a 
procedure which ensures that all the regression coefficients will be 
expressed in the same scale; enabling the comparison of their influence 
with respect to the whole multivariate model. 

3.3. Binomial generalized additive modeling with INLA 

A binomial GAM offers the possibility to model linear (or fixed) and 
nonlinear (or random) effects representing the functional relation be
tween a set of explanatory (see §3.2) and dependent (presence/absence 
of landslides and gullies per SU, separately) variables (e.g., Brenning, 
2005). Among the random effects one can include categorical covari
ates, or properties represented by discrete classes each one independent 
from the others, and model them as iid (or independent and identically 
distributed) effects. Additionally, one can model ordinal covariates, or 
properties represented by discrete classes which retain an ordinal 
structure (hence from small to large corresponding values per class). 
Ordinal covariates can be modeled accounting for adjacent-class-de
pendence by using a random walk function of the first order (RW1) 
between class estimations (Bakka et al., 2018). Furthermore, one can 
model covariates expressed at a latent level, either in space, in time or 
both (Lombardo et al., 2019b). This concept in the geomorphological 
literature has been theoretically introduced in (Lombardo et al., 
2018a). The idea behind it, and in the context of the present work, 
assumes that the covariates we commonly adopt in geomorphology may 
not express the whole variability in the landslide or gully distribution 
over space. In other words, there is virtually always an unexplained but 
still spatially structured component which is hardly accounted for in 
landslide susceptibility studies. This component or missed covariate or 
Latent Spatial Effect (LSE), can reflect the spatial signal of the trigger 
for event-specific inventories (Guzzetti et al., 2012) or any other un
accountable effects for which we do not have explicit data, in case of 
geomorphological inventories. 

We note here that we opted to model both landslide and gully 
erosion susceptibility (separately) by using a LSE, three ordinal effects 
(SU Area, Slopeμ and TWIμ), whereas we considered all remaining 
covariates as fixed effects. 

The INLA package (Rue and Held, 2005; Rue et al., 2009) of the 
programming language R (Team, 2000) offers a rapid and precise es
timation for Bayesian statistics featuring latent Gaussian models (Rue 
et al., 2017). In case of landslide susceptibility models we can sum
marize the present models (more details are provided in Lombardo 

et al., 2019a, 2019c), as follows: 

= + + + + +
=

P z s f f f f( ) ( ) ,
j

J

j j SU Area Slope µ TWIµ LSE0
1 (1) 

where, η is the logit link, P is the susceptibility either considered for 
landslides or for gullies, β0 is the global intercept, βj are the regression 
coefficients estimated for each of the zj covariates, fSU Area, fSlope μ, fTWIμ 

are the three ordinal properties we selected and fLSE is the latent field 
we compute by using a Besag model (Blangiardo and Cameletti, 2015). 

There are entire books dedicated to the calculations of latent cov
ariates, both over space and time and a detailed explanation can be 
found for instance in Krainski et al. (2018). Here we try to provide a 
quick numerical and graphical explanation directed to a geo-scientific 
readership. 

Any model, be it physically- or statistically- based produces a dis
tribution of residuals between the prediction estimates and the observa
tion. This concept is valid also for susceptibility models. In advanced 
spatial statistical applications, these residuals are evaluated over space. 
And, whether they are non-randomly geographically distributed their 
signal can be captured and re-integrated in the modeling procedure as a 
covariate acting at a latent level (e.g., Bakka et al., 2018). Simply com
puting the residuals and re-introducing them would inevitably lead to 
overfitting issues and misinterpretation of the results; for this reason, so
lutions have been proposed inspired by concepts such as smoothed re
siduals (Baddeley et al., 2005). In our case, being our space partitioned 
into SUs, we opted to implement a latent spatial effect which is driven as a 
function of neighboring mapping units. In practice, we compute a moving 
window through space which returns the average residual per SU from all 
the adjacent SUs (which share a border in the corresponding shapefile) 
and adds for each SU a random error component (ε). In this way, one can 
retrieve the effect of unexplained covariates and drive modeling perfor
mance strength from its inclusion in the model itself. This LSE approach is 
commonly referred as Besag (Gómez-Rubio, 2020) and it is assumed to be 
normally – Nf ~ (0, )LSE LSE – and multivariate normally – fLSE ~ mvnLSE – 
distributed. 

To drive the residual spatial averaging window, we computed the 
adjacency matrix (Condon et al., 2002), which in our case is essentially 
a sparse matrix 4978 × 4978 (the squared number of SUs) with ones 
(or adjacency links) reported for SU that share a boundary. This is 
graphically summarized in Fig. 3. 

Ultimately, we implemented a 10-fold cross-validation (CV) scheme for 
landslides and gullies separately. Each randomly selected subset is con
strained to be sampled only once for a total of 10 subsets containing 10% 
of the dataset for validation (the complementary 90% is used to fit). We 
note here that because of the one-time sampling constraint, the integration 
of the 10 predicted subsets corresponds to the whole study area, whose 
susceptibility can be plotted in a fully predicted map. To estimate the 
model perfomance we used Receiver Operating Characteristic curves and 
their Area Under the Curve. More specifically, we used the AUC classifi
cation proposed by (Hosmer and Lemeshow, 2000). 

4. Results 

4.1. Modeling performance 

Based on modeling performances, both landslide and gully suscept
ibility models show outstanding (Hosmer and Lemeshow, 2000) predictive 
skills. The performance of the 10-fold cross-validation scheme is summar
ized in Fig. 4, where we report the Receiver Operating Characteristic (ROC) 
curves and their Area Under the Curve (AUC). As mentioned above, their 
predictive skill is quite high, with CV landslide susceptibility having a 
median AUC of around 0.91 and the same for gullies with a median value 
of 0.97. We recall here that these are predictive performances for which 
even the LSE is being re-estimated for each CV replicate. As for the ro
bustness of the CV scheme, the inter-quartile distance in the AUC 
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distributions is less than 0.2 AUC in both cases, indicating strong stability 
even for randomly extracted subsets. Such high predictive skills are sur
prising and one may intuitively think that the inclusion of the LSE is 
boosting the performance. However, during additional tests we have run, 
the median AUC of a CV landslide susceptibility without LSE (unreported 
results) is approximately 0.89 and the same for the gully case is approxi
mately 0.86 (unreported results). This implies that for the landslide case, 
analogous estimates even in a simpler context can be achieved. As for the 
gully model, the latent component of the model retrieved more spatial 
information than it did for the landslide case. This could be due to the 
absence of a unknown but spatially-structured covariate in the gully sus
ceptibility model, for which we could not account for in our initial cov
ariate set. 

4.2. Covariates' effects 

4.2.1. Fixed effects 
Fig. 5 shows the posterior distribution of covariates estimated to be 

significant at least in one of the two susceptibility cases under con
sideration. What stands out the most is that only four covariates are 
significant in the landslide susceptibility model whereas the gully one 
has a much larger number of covariates for which the model is at least 
95% certain of their role. And yet, the difference in performance is 
negligible between the two, which implies that a gully erosion sus
ceptibility model expressed at the SU scale, requires a much larger 
number of properties to explain the spatial distribution of gully oc
currences. Conversely, the landslide case is well determined and the 
presence/absence distribution is well explained even with less predis
posing factors. 

Fig. 3. The left panel shows the SU partition we generated; the right panel is the zoom at the center of the study area (yellow box) where the adjacency matrix is plotted in 
map form, linking the centroids of adjacent SUs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Panel (a) shows 10 ROC curves for both landslide and gully susceptibility models. Each ROC curve correspond to one of the 10-fold cross validations we 
performed. Panel (b) summarizes the corresponding AUC distribution across the 10-fold CV scheme, for both landslides and gullies. 

L. Lombardo, et al.   Engineering Geology 277 (2020) 105776

6



4.2.2. Random effects 
Here we separately show the random effects of ordinal and latent 

covariates. Fig. 6 reports the ordinal nonlinear effects of SU area, Slopeμ 
and TWIμ. Two out of three covariates appear to be significant through 
their entire distribution for the landslide case. More specifically, the SU 
area mean effect increases almost as a logarithmic function where a 
negative regression coefficient is estimated for small SUs and a rapid 
increase in the regression coefficients can be seen up to SUs with an 
extent of about 0.8km2 after which, the effect remains essentially the 
same. This is even more exacerbated for the Slopeμ case, where the 
nonlinear function appears more sigmoidal in shape, from small to large 
steepness values. As for the TWIμ, the effect is mostly nonsignificant 
although the mean contribution to the model is shown to be positive for 

small TWI values after which, it rapidly decays to negligible effects. 
The situation for the gully susceptibility model is quite different. The 

SU area, on average, does not contribute to the model with the exception 
of very small SU for which the contribution is clearly negative. The Slopeμ 
effect is negative for the left and right tail of mean steepness distribution 
per SU, whereas intermediate mean slope values per SU between 5° and 
10°. As for the TWIμ the whole distribution is not only nonsignificant but 
the mean value of the regression coefficient per class aligns with zero, 
which implies a negligible effect to the multivariate scheme. 

As for the LSE computed for the two processes, Fig. 7 shows their 
posterior distribution in map form, highlighting some relevant differ
ences. The LSE for the landslide susceptibility model is much smoother 
than its gully counterpart. And, its posterior distribution is confined 
between two relatively small minimum and maximum values, com
pared to the LSE for gully. This leads to two considerations. The land
slide susceptibility is well explained even just by using fixed and ordinal 
random effects. And, that the gully counterpart is missing instead a 
much larger spatially-structured information. This does not come as a 
surprise because SU have a well established literature in the landslide 
context whereas this is the first attempt for the gully case. 

Notably, the two LSE have significantly different distributions both 
in amplitude and geographic patterns. This is shown in Fig. 8 where the 
minima and maxima of the two dimensional space between the two LSE 
are very different as well as their respective relationship. This plot 
implies that the two geomorphological processes have very different 
residual distributions and also that the two processes themselves may 
be independent from each other, at least in the present study area. 

4.3. Multi-hazard susceptibility mapping 

Our modeling framework led to estimate two separate susceptibility 
models, one for landslide and one for gully erosion occurrence. This is 
geographically reported in Fig. 9, panels a and b, where the mean 
posterior probability spectrum of the two geomorphological processes 
has been reclassified according to 3 quartiles (hence mimicking the 
central box of a boxplot). 

To complete the information on the posterior distribution of the 
susceptibility estimates, we also report the uncertainty around the 
mean susceptibility for the two cases, this being shown in Fig. 9, panels 
c and d. For a susceptibility model to be useful for any spatial planners 
or stakeholders it should reliably estimate the left and right tails of the 
probability distribution. This is a requirement because it is upon these 
two extremes that decisions are usually made, whereas the central 
portion of the probability spectrum can exhibit a larger variation (Rossi 
et al., 2010; Lombardo et al., 2016a). In other words the space defined 
between the mean susceptibility and its uncertainty should be 
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Dist2Stream
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Elevation

Northness

Northness

PLC

PRC

PRC

RSP

Slope

TWI

Posterior m
ean
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Fig. 5. Fixed effects estimated to be significant at least once for both landslide 
and gully susceptibility models. The y-axis reports the regression coefficients for 
each of the covariates listed in the x-axis. Rombi are the mean of the posterior 
distribution of the given regression coefficient. Triangles depict the 95% 
credible interval of the coefficient posterior distribution. Blue and red are 
colour-codes for landslide and gully susceptibility models, respectively. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 6. Random effects for SU area, Slopeμ and TWIμ. The distribution for each nonlinear function is summarized with its mean (solid line) and 95% credible interval 
(transparent background). Blue and red are colour-codes for landslide and gully susceptibility models, respectively. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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distributed in a bell shape. This is shown in Fig. 10 where the two 
susceptibility models well exhibit small uncertainties for the extremes 
of the probability range and much larger variations in between. Also, 
the gully erosion model shows a larger variability in the susceptibility 
estimates compared to its landslide counterpart. 

Ultimately, we combined the two reclassified mean susceptibility 
maps in a unified multi-hazard one. This is done by taking the four 
susceptibility classes for landslides (L1 to L4) and gullies (G1 to G4) and 
by computing each of the 16 possible combinations –or using the 
combine function in any GIS environment–. As a result, we obtained 16 

multi-hazard classes, from very low (L1-G1) to very high (L4-G4) sus
ceptibility estimates in both cases. This is shown in Fig. 9e in map form, 
where the highest combined susceptibility mostly affects the southern 
sector of the study area; and it transitions to the lowest combined 
susceptibility northward with intermediate combined susceptibility 
conditions confined to the north-west corner. 

4.4. Heritage sites at risk 

We recall here that our goal was to assess the exposure of cultural 
heritage sites to the combined susceptibility of landslides and gully 
occurrences. For this reason, we have added an additional step where 
we intersect the combined susceptibility shown in Fig. 9e together with 
known locations of Neolithic sites in the study area. The result of this 
procedure is shown in Fig. 11a, where the spatial distribution of Neo
lithic sites is plotted with a palette corresponding to the combined 
susceptibility classes. Here they appear quite scattered with very few 
highly-susceptible clusters shown in the south- and north- western 
sectors. A graphical summary of the number of sites under threat is also 
reported in Fig. 11b, where, for instance, 12 Neolithic sites fall in the 
highly susceptible class for both processes (S4-G4). 

As shown in Nicu (2018a) and Nicu and Asăndulesei (2018), gully 
erosion and landslides are a real threat for cultural heritage in the 
northeastern part of Romania. Currently, there are no mitigation 
measures or future management plans for what concerns the landslides 
in the area, except for the stone gabions erected in order to stabilise the 
north-western slopes of Oilor Hill (see, Nicu, 2018b). As for gully ero
sion mitigation measures, the most notable example is the one of Bai
ceni-Cucuteni gully. In the upper part of this gully, trees were planted 
and 14 concrete barriers were built to stop the erosion process. As a 
result, the erosion has considerably decreased (see, Nicu, 2019). No
tably, there are no fast moving landslides within the study area. And, 
the way different types of geomorphic processes affect cultural heritage, 
both buried and built, has been discussed in (Nicu, 2017a). There, the 

Fig. 7. Posterior distribution of the Latent Spatial Effects for the landslide (panels a and c) and gully (panels b and d) susceptibility models. Panel (a) and (b) report 
the posterior mean of the two latent fields, whereas panels (c) and (d) report the 95% credible interval estimated as the difference between the posterior 97.5 and 2.5 
LSE percentiles. 

Fig. 8. 2D density scatterplot of the posterior mean for the LSE belonging to the 
landslide (x-axis) and gully erosion (y-axis) susceptibility models. 
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author argued that, for this specific area, gully erosion is more de
structive than landslides. (Nicu, 2017a) explains that in case of gullies, 
the archaeological remains are washed away and carried even for long 
distances through the small river valleys, while in the case of landslides, 
they are moved together with the landslide body towards the base of 
the hill. In such a complex environment, multi-hazard approaches re
present a significant step forward in the prioritisation of risk reduction, 
especially for geo-archaeological applications (Sevieri et al., 2020). 

5. Discussions 

The modeling workflow we propose here is a unique case in the 
geoscientific literature for several reasons. Firstly, the vast majority of 
the community working with statistically-based susceptibility models 
implements a frequentist version of GLM. Conversely, here we do not 
only extend the study to the Bayesian case, but we also adopt a GAM, 

with random effect of ordinal and latent spatial nature. Secondly, we 
model more than one susceptibility in the same study, and we combine 
the two probability spectra to assess vulnerable Neolithic sites. We do 
this by adopting a SU partition which was tested so far only for land
slides. We stress here that SUs may still not be the best spatial partition 
for gully erosion occurrence because gullies can occur in relatively flat 
conditions where the SU calculation itself struggles to find homo
geneous aspect conditions. In this work, we tried to minimize this effect 
by generating high-resolution SUs; we recall here they have a mean 
extent of 0.1km2 and a 95% confidence interval of 0.43km2. 

Few interesting points should also be stressed in terms of covariate 
contributions. The landslide susceptibility model required a much fewer 
number of fixed effects (only four estimated to be significant) to pro
duce outstanding results. Conversely, the gully erosion susceptibility 
estimated eleven fixed effects as significant. Conversely, ordinal cov
ariates show an inverted situation where the landslide susceptibility 

Fig. 9. Panel (a) shows the mean landslide susceptibility together with its 95% credible interval in panel (c). Similarly, the mean gully erosion susceptibility is shown 
in panel (b) and its 95% level of uncertainty in panel (d). For the two mean susceptibilities (a) and (b), we have reclassified the probability spectra into four classes 
namely, low (S1-G1), moderately low (S2-G2), moderately high (S3-G3) and high susceptibility (S4-G4). This has been obtained by slicing the two probability 
distributions according to the three quartiles (τ = 0.25, 0.5 and 0.75). Panel (e) shows the combination of the four probability classes for landslides and gullies into a 
single multi-hazard susceptibility map. 
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model draws explanatory strength from the three random effects, and 
the gully susceptibility only shows significant contributions from the 
Slopeμ. This is inverted again for the two latent spatial fields, where the 
landslide susceptibility model is quite stable and highly performing 
with or without the LSE. As for the gully erosion case, the LSE has a 
much larger contribution over the final probability estimates. 
Moreover, we tested our field observation that gully head started in 
close proximity to sheep tracks. We show here an example photo taken 
during mapping campaigns (see Fig. 12). 

Moreover, even in the same statistical modeling setting, an ideal 
situation would have directly featured the distance to the sheep tracks. 
However, because we lacked high resolution satellite images, we could 
only compute the distance from sheepfolds, which we recognize to be 
an approximation of the phenomenon we observed. Nevertheless, the 
regression coefficient of the distance to sheepfolds appears to be sig
nificant and among the largest contributors (in absolute value) for the 
gully susceptibility model. And, it appears to be non-significant and 
with a much smaller coefficient in the landslide case. Notably, despite 
the significant contribution of this covariate to the gully erosion model, 
we do not claim this to be a cause for gullying. To make such a claim, 
further geotechnical tests are required to demonstrate significant hy
drological and mechanical changes in soils compacted due to the con
tinuous passage of sheep herds. 

We recall here that the two geomorphological processes have been 
modeled separately. However, the literature suggests that landslide and 
gullies may influence each other. For instance, Lucà et al. (2011) ex
plains that debris flows can occur in gullies thanks to the volume of 
entrainable sediments (Bovis and Jakob, 1999). They also mention that 
landslides can affect gully headcuts and banks steeper that the adjacent 
slopes (VanDine and Bovis, 2002). Also, Kukemilks and Saks (2013) 
notes that landslides themselves can form on the banks of newly de
veloped gullies showing high correlation one another. For this reason, 
we are also testing more complex joint probability models where the 
two processes can be estimated together rather than separately. For 
instance, one can initially use one of the two processes as a reference, 
let us assume here to be the landslides. By adopting a suitable like
lihood the spatial probability of landslide occurrences can be estimated. 
Then, a second likelihood can be used to measure the necessary de
viation from the landslides to spatially estimate gullies (see, Hessellund 
et al., 2019). We see this as the direction to take in the future because 
joint probability models would ensure that reciprocal spatial influences 
would be properly accounted for. In the present state of the geoscien
tific literature, the implementation of such models is yet to be tested, 

Fig. 10. Error plot showing the relationship between posterior mean and its uncertainty measured as 95% credible interval, for the landslide (blue) and gully (red) 
susceptibility models, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Spatial distribution of cultural heritage sites colour-coded according to 
the combined landslide and gully erosion occurrence probabilities (a). Three- 
dimensional barplot showing the combined susceptibilities and the number of 
heritage sites falling in each class (b). 
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likely because of their added complexity, and recent examples still 
consider multiple processes separately (Cama et al., 2020). 

From the heritage sites perspective, from a total sample of 107 
Neolithic sites, our combined susceptibility highlighted: i) 12 sites 
falling in the class with high probability for both processes (S4-G4), ii) 6 
sites falling in the class with high probability for landslides and mod
erately high probability for gullies (S4-G3), iii) 7 sites falling in the class 
with high probability for gullies and moderately high probability for 
landslides (S3-G4), and iv) 16 sites falling in the class with moderately 
high probability for both processes (S3-G3). The full list of endangered 
cultural sites is included in Appendix 2. 

Out of the 12 Neolithic sites that fall in the class with high prob
ability for both processes (S4-G4), one (La Cruce in Fundoaia) is featured 
both in the List of Historical Monuments (LMI) and National 
Archaeological Registry (RAN). Out of the 16 Neolithic sites that fall in 
the class with moderately high probability for both processes (S3-G3), 
one site is listed in the LMI and two in RAN. Moreover, out of the 6 sites 
falling in the class with high probability for landslides and moderately 
high probability for gullies (S4-G3), one site is listed in RAN; and out of 
the 7 sites falling in the class with high probability for gullies and 
moderately high probability for landslides (S3-G4), one is listed both in 
RAN and LMI. This means that five sites of national importance may be 
exposed to both landslides and gully erosion. However, even if the re
maining sites (102) are not listed as monuments or geo-archaeological 
sites of great importance at the national level, they are still culturally 
relevant as they give to the landscape a higher historical value. In fact, 
cherishing the cultural heritage gives to the local communities a sense 
of identity and belonging. 

6. Conclusion 

Our combined susceptibility to landslide and gullies offers an in
tegrated view of geomorphological threats to cultural heritage sites in 
the study area close to the city of Iaşi (Romania). Usually research 
outputs rarely find a direct translation into real-world applications. The 
added value of this work resides in the multi-disciplinary components 
namely, geomorphology, statistics and anthropology, which make the 
direct translation of the results a natural consequence of our research. 
In fact, we are in the process of contacting local administrations to 
inform them of our findings and update the heritage site status in the 

Romanian registry. 
More generally, this type of integrated assessment is hardly avail

able both in the geomorphological and anthropological communities. 
We obtained it by using advanced spatial Bayesian statistical models 
which offer a higher flexibility, interpretability and performance com
pared to common approaches reported in the literature. However, two 
remarks must be made:  

1. Because gullies are so active in the region, temporal spatio-temporal 
variations in the landscape itself as well as the gully and landslide 
occurrences can be expected. For this reason, one of the limitations 
of the present contribution is related to the pure spatial connotation 
of the model we have built. Therefore, we envision to temporally 
map the evolution of two geomorphic processes to produce two 
multi-temporal inventories. This database would support more ap
propriate space-time models necessary in such a dynamic landscape.  

2. We combined the two susceptibility estimates only at the end of the 
modeling procedure. And, if from the geomorphological perspective 
this is already at the research forefront, from the statistical per
spective further improvements may still be required. This im
provement corresponds to joint probability models, where land
slides and gully locations would be modeled together and their 
combined susceptibility would be the natural modeling output. 
Joint probability models are much more demanding in terms of 
computational resources when compared to what is required to 
compute the two susceptibilities separately. For this reason, we 
envision the investments of future efforts to build a tool based on 
joint probability for a fully-integrated and unified multi-hazard 
model. 

Declaration of Competing Interest 

None. 

Acknowledgement 

We are grateful to the Prut-Barlad Water Administration who kindly 
provided the LIDAR coverage of the study area making it possible to 
create a detailed inventory of both landslides and gully occurrences.   

Fig. 12. Sheep track and gully (red line) occurrence proximity example. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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Appendix A. Land Use and Soil data 

Fig. A1. Land Use (a) and Soil texture (b) maps shown in map form.  
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Appendix B. Endangered heritage sites 

Table B1 
List of cultural heritage sites for which the combined landslide and gully erosion susceptibility indicates highly prone conditions for at least one of the two 
geomorphological processes. The projected coordinate system of Easting and Northing corresponds to the “Dealul Piscului 1970 Stereo 70”; Class is the combined 
landslide-gully susceptibility (see Fig. 9); LMI/RAN codes are the label for which some of the sites are reported in the Romanian archive.       

Heritage site name Easting Northing Class LMI/RAN codes  

Dealul Beci 27°01′54″ 47°11′36″ S4-G4 −/− 
Draga II / via lui Prutinica 27°03′10″ 47° 09′50″ S4-G4 −/− 
Podiş 26°53′01″ 47°16′50″ S4-G4 −/− 
La Curte / pe Dealul Cier 27°05′50″ 47°10′13″ S4-G4 −/− 
Tarlaua Bahna 26°59′35″ 47°07′40″ S4-G4 −/− 
Dealul Cânepăriei 27°00′05″ 47°08′25″ S4-G4 −/− 
Dealul Brocea 27°01′50″ 47°11′05″ S4-G4 −/− 
La Cruce în Fundoaia 26°59′10″ 47°08′15″ S4-G4 IS-I-s-B-03591/99263.01 
La Curte 27°04′02″ 47°12′34″ S4-G4 −/− 
Tarlaua Păşcănia 26°52′40″ 47°17′10″ S4-G4 −/− 
Dealurile Porcaret şi Călugărul 26°52′40″ 47°17′10″ S4-G4 −/− 
La Cimitir 27°03′04″ 47°12′20″ S4-G4 −/− 
Pietrărie 26°54′13″ 47°19′19″ S4-G3 −/− 
Dealul Mănăstirii / Chetrosu 26°54′19″ 47°15′24″ S4-G3 −/95,578.01 
Nisipărie 26°59′30″ 47°11′40″ S4-G3 −/− 
Dealul Buznei 27°01′16″ 47°12′07″ S4-G3 −/− 
Cornişa Dealului / Darmoxa 26°57′30″ 47°10′55″ S4-G3 −/− 
La nord-vest de sat 27°07′35″ 47°09′50″ S4-G3 −/− 
Movila Hârtopeanu 27°07′27″ 47°14′06″ S3-G4 −/− 
Dealul Armnaca 27°16′45″ 47°10′10″ S3-G4 −/− 
În Èšigănime 27°13′45″ 47°08′25″ S3-G4 −/− 
Zgaia II 27°00′40″ 47°07′00″ S3-G4 −/− 
Găneşti / Silişte 27°01′20″ 47°09′05″ S3-G4 IS-I-s-B-03593/95569.01 
Hăbăşeşti / Holm 26°58′09″ 47°09′26″ S3-G4 −/− 
La sud-est de sat 27°08′25″ 47°08′50″ S4-G3 −/−  

Table B2 
List of cultural heritage sites for which the combined landslide and gully erosion susceptibility indicates moderately high prone conditions for both geomorphological 
processes. The projected coordinate system of Easting and Northing corresponds to the “Dealul Piscului 1970 Stereo 70”; Class is the combined landslide-gully 
susceptibility (see Fig. 9); LMI/RAN codes are the label for which some of the sites are reported in the Romanian archive.       

Heritage site name Easting Northing Class LMI/RAN codes  

Hurez 26°54′55″ 47°18′00″ S3-G3 −/− 
În livada de meri de la est. de sat / Dealul Criveşti 26°54′35″ 47°12′15″ S3-G3 −/− 
Tuioasa / Tinoasa 26°55′30″ 47°15′05″ S3-G3 −/− 
Holm / Prigoreni 27°04′46″ 47°12′29″ S3-G3 −/− 
Crescătorie 2 27°03′34″ 47°14′52″ S3-G3 −/− 
Livada 27°01′30″ 47°11′05″ S3-G3 −/− 
Marginea de est. a satului 27°14′30″ 47°12′10″ S3-G3 −/− 
Marginea de NE a satului 26°55′05″ 47°12′18″ S3-G3 −/− 
Hârtopul de la est. de sat / la Hârtop 26°54′52″ 47°11′59″ S3-G3 IS-I-s-B-03569/99236.02 
Dealul Fântânilor 26°53′55″ 47°11′50″ S3-G3 −/− 
Bârghici 26°53′33″ 47°19′01″ S3-G3 −/− 
Silişte / după Grădini 27°01′05″ 47°11′35″ S3-G3 −/95,523.01 
Muchia Dealului 26°54′49″ 47°12′22″ S3-G3 −/− 
Dealul Pandele 27°11′37″ 47°11′44″ S3-G3 −/− 
În Hârtop / spre Budăi 26°54′37″ 47°12′11″ S3-G3 −/− 
Văleanca 27°18′01″ 47°12′21″ S3-G3 −/−  

References 

Agapiou, A., Lysandrou, V., Hadjimitsis, D.G., 2020. A european-scale investigation of soil 
erosion threat to subsurface archaeological remains. Remote Sens. 12 (4), 675. 

Alvioli, M., Marchesini, I., Reichenbach, P., Rossi, M., Ardizzone, F., Fiorucci, F., Guzzetti, 
F., 2016. Automatic delineation of geomorphological slope units with r.slopeunits 
v1.0 and their optimization for landslide susceptibility modeling. Geosci. Model Dev. 
9 (11), 3975–3991. 

Amato, G., Eisank, C., Castro-Camilo, D., Lombardo, L., 2019. Accounting for covariate 
distributions in slope-unit-based landslide susceptibility models. a case study in the 
alpine environment. Eng. Geol. 260 (In print). 

Arabameri, A., Pradhan, B., Rezaei, K., Yamani, M., Pourghasemi, H.R., Lombardo, L., 
2018. Spatial modelling of gully erosion using evidential belief function, logistic 
regression, and a new ensemble of evidential belief function–logistic regression al
gorithm. Land Degrad. Dev. 29 (11), 4035–4049. 

Arabameri, A., Chen, W., Loche, M., Zhao, X., Li, Y., Lombardo, L., Cerda, A., Pradhan, B., 
Bui, D.T., 2019. Comparison of machine learning models for gully erosion suscept
ibility mapping. Geosci. Front. https://doi.org/10.1016/j.gsf.2019.11.009. 

Arabameri, A., Cerda, A., Pradhan, B., Tiefenbacher, J.P., Lombardo, L., Bui, D.T., 2020. A 
methodological comparison of head-cut based gully erosion susceptibility models: 
Combined use of statistical and artificial intelligence. Geomorphology 107136. 

Asăndulesei, A., Tencariu, F.A., Nicu, I.C., 2020. Pars pro totoremote sensing data for the 
reconstruction of a rounded chalcolithic site from ne Romania: the case of ripice
ni–holm settlement (cucuteni culture). Remote Sens. 12 (5), 887. 

Aykan, B., 2018. Saving Hasankeyf: Limits and Possibilities of International Human 
Rights Law. Int. J. Cult. Prop. 25 (1), 11–34. 

Baddeley, A., Turner, R., Møller, J., Hazelton, M., 2005. Residual analysis for spatial point 
processes (with discussion). J. Royal Stat. Soc. Ser. B 67 (5), 617–666. 

Bakka, H., Rue, H., Fuglstad, G.-A., Riebler, A., Bolin, D., Illian, J., Krainski, E., Simpson, 
D., Lindgren, F., 2018. Spatial modeling with R-INLA: a review. Wiley Interdisc. Rev. 
Comput. Stat. 10 (6), e1443. 

L. Lombardo, et al.   Engineering Geology 277 (2020) 105776

13

http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0005
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0005
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0010
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0010
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0010
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0010
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0015
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0015
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0015
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0020
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0020
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0020
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0020
https://doi.org/10.1016/j.gsf.2019.11.009
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0030
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0030
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0030
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0035
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0035
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0035
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0040
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0040
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0045
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0045
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0050
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0050
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0050


Bell, R., Glade, T., 2004. Multi-hazard analysis in natural risk assessments. WIT Trans. 
Ecol. Environ. 77. 

Beven, K., Kirkby, M.J., 1979. A physically based, variable contributing area model of 
basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie 
du bassin versant. Hydrol. Sci. J. 24 (1), 43–69. 

Blangiardo, M., Cameletti, M., 2015. Spatial and Spatio-Temporal Bayesian Models with 
R-INLA. John Wiley & Sons. 

Boardman, J., 2014. How old are the gullies (dongas) of the sneeuberg uplands, eastern 
karoo, South Africa? Catena 113, 79–85. 

Böhner, J., Selige, T., 2006. Spatial prediction of soil attributes using terrain analysis and 
climate regionalisation. Gottinger Geogr. Abhandlungen 115, 13–28. 

Bout, B., Lombardo, L., van Westen, C., Jetten, V., 2018. Integration of two-phase solid 
fluid equations in a catchment model for flashfloods, debris flows and shallow slope 
failures. Environ. Model. Softw. 105, 1–16. 

Bovis, M.J., Jakob, M., 1999. The role of debris supply conditions in predicting debris 
flow activity. Earth Surf. Process. Landf. 24 (11), 1039–1054. 

Brabb, E., Pampeyan, H., Bonilla, M., 1972. MG 1972. landslide susceptibility in San 
Mateo County, California. US Geological Survey Miscellaneous Field Studies Map MF- 
360, Scale 1(62,500). 

Brenning, A., 2005. Spatial prediction models for landslide hazards: review, comparison 
and evaluation. Nat. Hazards Earth Syst. Sci. 5 (6), 853–862. 

Brenning, A., 2008. Statistical geocomputing combining R and SAGA: the example of 
landslide susceptibility analysis with generalized additive models. Hamburger 
Beiträge zur Physischen Geographie und Landschaftsökologie 19 (23−32), 410. 

Bromhead, E., Canuti, P., Ibsen, M.-L., 2006. Landslides and cultural heritage. Landslides 
3 (4), 273–274. 

Budimir, M., Atkinson, P., Lewis, H., 2015. A systematic review of landslide probability 
mapping using logistic regression. Landslides 12 (3), 419–436. 

Cama, M., Schillaci, C., Kropáček, J., Hochschild, V., Bosino, A., Märker, M., 2020. A 
probabilistic assessment of soil erosion susceptibility in a head catchment of the 
Jemma Basin, Ethiopian Highlands. Geosciences 10 (7), 248. 

Capizzi, P., Martorana, R., 2014. Integration of constrained electrical and seismic tomo
graphies to study the landslide affecting the cathedral of Agrigento. J. Geophys. Eng. 
11 (4), 045009. 

Carrara, A., Cardinali, M., Guzzetti, F., Reichenbach, P., 1995. GIS technology in mapping 
landslide hazard. In: Geographical Information Systems in Assessing Natural Hazards. 
Springer, pp. 135–175. 

Castro Camilo, D., Lombardo, L., Mai, P., Dou, J., Huser, R., 2017. Handling high pre
dictor dimensionality in slope-unit-based landslide susceptibility models through 
LASSO-penalized Generalized Linear Model. Environ. Model. Softw. 97, 145–156. 

Chang, J.-M., Chen, H., Jou, B.J.-D., Tsou, N.-C., Lin, G.-W., 2017. Characteristics of 
rainfall intensity, duration, and kinetic energy for landslide triggering in Taiwan. 
Eng. Geol. 231, 81–87. 

Chen, H., Zhang, S., Peng, M., Zhang, L.M., 2016. A physically-based multi-hazard risk 
assessment platform for regional rainfall-induced slope failures and debris flows. Eng. 
Geol. 203, 15–29. 

Chirica, V. and Tanasachi, M. (1985) Repertoriul arheologic al judeţului iaşi. vol. i/1984. 
Condon, E., Golden, B., Lele, S., Raghavan, S., Wasil, E., 2002. A visualization model 

based on adjacency data. Decis. Support. Syst. 33 (4), 349–362. 
Conoscenti, C., Agnesi, V., Angileri, S., Cappadonia, C., Rotigliano, E., Märker, M., 2013. 

A GIS-based approach for gully erosion susceptibility modelling: a test in Sicily, Italy. 
Environ. Earth Sci. 70 (3), 1179–1195. 

Daly, P., Rahmayati, Y., 2012. Cultural heritage and community recovery in post-tsunami 
aceh. In: From the Ground Up: Perspectives on Post-Tsunami and Post-Conflict Aceh. 
Institute of Southeast Asian Studies, Singapore, pp. 57–78. 

DeGraff, J., Canuti, P., 1988. Using isopleth mapping to evaluate landslide activity in 
relation to agricultural practices. Bull. Int. Assoc. Eng. Geol. 38 (1), 61–71. 

Fatorić, S., Seekamp, E., 2017. Are cultural heritage and resources threatened by climate 
change? A systematic literature review. Clim. Chang. 142 (1–2), 227–254. 

Felicsimo, Á.M., Cuartero, A., Remondo, J., Quirós, E., 2013. Mapping landslide sus
ceptibility with logistic regression, multiple adaptive regression splines, classification 
and regression trees, and maximum entropy methods: a comparative study. 
Landslides 10 (2), 175–189. 

Feranec, J., Hazeu, G., Christensen, S., Jaffrain, G., 2007. Corine land cover change de
tection in Europe (case studies of the Netherlands and Slovakia). Land Use Policy 24 
(1), 234–247. 

Frattini, P., Crosta, G. and Carrara, A. (2010) Techniques for evaluating the performance 
of landslide susceptibility models. Eng. Geol. 111(1), 62–72. 

Goetz, J., Brenning, A., Petschko, H., Leopold, P., 2015. Evaluating machine learning and 
statistical prediction techniques for landslide susceptibility modeling. Comput. 
Geosci. 81, 1–11. 

Gómez Gutiérrez, Á., Schnabel, S., Felicsimo, Á.M., 2009. Modelling the occurrence of 
gullies in rangelands of Southwest Spain. Earth Surface Processes and Landforms: The 
Journal of the British Geomorphological Research Group 34 (14), 1894–1902. 

Gómez-Rubio, V., 2020. Bayesian Inference with INLA. CRC Press. 
Grossi, C.M., Brimblecombe, P., Harris, I., 2007. Predicting long term freeze–thaw risks 

on europe built heritage and archaeological sites in a changing climate. Sci. Total 
Environ. 377 (2–3), 273–281. 

Guisan, A., Weiss, S.B., Weiss, A.D., 1999. GLM versus CCA spatial modeling of plant 
species distribution. Plant Ecol. 143 (1), 107–122. 

Guo, W., Zheng, X., Meng, F., Zhang, X., 2019. The evolution of cultural space in a world 
heritage site: Tourism sustainable development of mount wuyi, China. Sustainability 
11 (15), 4025. 

Guzman, P., Fatorić, S., Ishizawa, M., 2020. Monitoring climate change in world heritage 
properties: a review for the potential application of landscape approaches in the state 
of conservation system. Climate 8 (3), 39. 

Guzzetti, F., Mondini, A.C., Cardinali, M., Fiorucci, F., Santangelo, M., Chang, K.-T., 2012. 
Landslide inventory maps: New tools for an old problem. Earth Sci. Rev. 112 (1–2), 
42–66. 

Heerdegen, R.G., Beran, M.A., 1982. Quantifying source areas through land surface 
curvature and shape. J. Hydrol. 57 (3–4), 359–373. 

Hessellund, K.B., Xu, G., Guan, Y., Waagepetersen, R., et al., 2019. Semi-parametric 
multinomial logistic regression for multivariate point pattern data. Department of 
Mathematics, Aarhus University, CSGB Research Reports. 

Hosmer, D.W., Lemeshow, S., 2000. Applied Logistic Regression, Second edition. Wiley, 
New York. 

Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes classification of landslide types, an 
update. Landslides 11 (2), 167–194. 

Jiao, Y., Zhao, D., Ding, Y., Liu, Y., Xu, Q., Qiu, Y., Liu, C., Liu, Z., Zha, Z., Li, R., 2019. 
Performance evaluation for four GIS-based models purposed to predict and map 
landslide susceptibility: a case study at a World Heritage site in Southwest China. 
Catena 183, 104221. 

Kincey, M., Gerrard, C., Warburton, J., 2017. Quantifying erosion of at riskarchaeological 
sites using repeat terrestrial laser scanning. J. Archaeol. Sci. Rep. 12, 405–424. 

Krainski, E.T., Gómez-Rubio, V., Bakka, H., Lenzi, A., Castro-Camilo, D., Simpson, D., 
Lindgren, F., Rue, H., 2018. Advanced Spatial Modeling with Stochastic Partial 
Differential Equations Using R and INLA. CRC Press. 

Kuchitsu, N., Ishizaki, T., Nishiura, T., 2000. Salt weathering of the brick monuments in 
Ayutthaya, Thailand. Eng. Geol. 55 (1–2), 91–99. 

Kukemilks, K., Saks, T., 2013. Landslides and gully slope erosion on the banks of the 
Gauja River between the towns of Sigulda and Ligatne. Estonian J. Earth Sci. 62 (4), 
231. 

Leoni, G., Barchiesi, F., Catallo, F., Dramis, F., Fubelli, G., Lucifora, S., Mattei, M., Pezzo, 
G., Puglisi, C., 2009. GIS methodology to assess landslide susceptibility: application 
to a river catchment of Central Italy. J. Maps 5 (1), 87–93. 

Lombardo, L., Mai, P.M., 2018. Presenting logistic regression-based landslide suscept
ibility results. Eng. Geol. 244, 14–24. 

Lombardo, L., Cama, M., Conoscenti, C., Märker, M., Rotigliano, E., 2015. Binary logistic 
regression versus stochastic gradient boosted decision trees in assessing landslide 
susceptibility for multiple-occurring landslide events: application to the 2009 storm 
event in Messina (Sicily, southern Italy). Nat. Hazards 79 (3), 1621–1648. 

Lombardo, L., Bachofer, F., Cama, M., Märker, M., Rotigliano, E., 2016a. Exploiting 
Maximum Entropy method and ASTER data for assessing debris flow and debris slide 
susceptibility for the Giampilieri catchment (North-Eastern Sicily, Italy). Earth Surf. 
Process. Landf. 41 (12), 1776–1789. 

Lombardo, L., Fubelli, G., Amato, G., Bonasera, M., 2016b. Presence-only approach to 
assess landslide triggering-thickness susceptibility: a test for the Mili catchment 
(North-Eastern Sicily, Italy). Nat. Hazards 84 (1), 565–588. 

Lombardo, L., Opitz, T., Huser, R., 2018a. Point process-based modeling of multiple 
debris flow landslides using INLA: an application to the 2009 Messina disaster. Stoch. 
Env. Res. Risk A. 32 (7), 2179–2198. 

Lombardo, L., Saia, S., Schillaci, C., Mai, P.M., Huser, R., 2018b. Modeling soil organic 
carbon with Quantile Regression: Dissecting predictors’ effects on carbon stocks. 
Geoderma 318, 148–159. 

Lombardo, L., Bakka, H., Tanyas, H., van Westen, C., Mai, P.M., Huser, R., 2019a. 
Geostatistical modeling to capture seismic-shaking patterns from earthquake-induced 
landslides. J. Geophys. Res. Earth Surf. 124 (7), 1958–1980. 

Lombardo, L., Opitz, T., Ardizzone, F., Guzzetti, F., Huser, R., 2019b. Space-Time 
Landslide Predictive Modelling. arXiv preprint. arXiv:1912.01233. 

Lombardo, L., Opitz, T., Huser, R., 2019c. 3 - Numerical recipes for landslide spatial 
prediction using R-INLA: A Step-by-step Tutorial. In: Pourghasemi, H.R., Gokceoglu, 
C. (Eds.), Spatial Modeling in GIS and R for Earth and Environmental Sciences. 
Elsevier, pp. 55–83 (ISBN 978-0-12-815226-3). 

Lorusso, S., Braida, A.M., Natali, A., 2018. Interdisciplinary studies in cultural and en
vironmental heritage: history, protection, valorization, management. Conserv. Sci. 
Cult. Herit. 18 (1), 177–199. 

Lucà, F., Conforti, M., Robustelli, G., 2011. Comparison of GIS-based gullying suscept
ibility mapping using bivariate and multivariate statistics: Northern Calabria, South 
Italy. Geomorphology 134 (3–4), 297–308. 

Mäntyniemi, P., Tsapanos, T.M., Kijko, A., 2004. An estimate of probabilistic seismic 
hazard for five cities in Greece by using the parametric-historic procedure. Eng. Geol. 
72 (3–4), 217–231. 

Margottini, C., 2004. Instability and geotechnical problems of the Buddha niches and 
surrounding cliff in Bamiyan Valley, Central Afghanistan. Landslides 1 (1), 41–51. 

Marzeion, B., Levermann, A., 2014. Loss of cultural world heritage and currently in
habited places to sea-level rise. Environ. Res. Lett. 9 (3), 034001. 

Mihu-Pintilie, A., Nicu, I.C., 2019. GIS-based landform classification of eneolithic ar
chaeological sites in the Plateau-plain transition Zone (NE Romania): Habitation 
Practices vs. Flood Hazard perception. Remote Sens. 11 (8), 915. 

Mineo, S., Pappalardo, G., 2020. Sustainable fruition of cultural heritage in areas affected 
by rockfalls. Sustainability 12 (1), 296. 

Nicu, I.C., 2016. Cultural heritage assessment and vulnerability using Analytic Hierarchy 
Process and Geographic Information Systems (Valea Oii catchment, North-eastern 
Romania). An approach to historical maps. Int. J. Disaster Risk Reduction 20, 
103–111. 

Nicu, I.C., 2017a. Natural hazards - A threat for IMMOVABLE cultural heritage. A review. 
Int. J. Conserv. Sci. 8 (3). 

Nicu, I.C., 2017b. Frequency ratio and GIS-based evaluation of landslide susceptibility 
applied to cultural heritage assessment. J. Cult. Herit. 28, 172–176. 

Nicu, I.C., 2018a. Application of analytic hierarchy process, frequency ratio, and statis
tical index to landslide susceptibility: an approach to endangered cultural heritage. 
Environ. Earth Sci. 77 (3), 79. 

L. Lombardo, et al.   Engineering Geology 277 (2020) 105776

14

http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0055
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0055
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0060
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0060
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0060
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0065
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0065
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0070
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0070
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0075
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0075
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0080
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0080
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0080
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0085
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0085
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0090
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0090
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0090
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0095
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0095
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0100
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0100
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0100
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0105
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0105
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0110
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0110
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0115
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0115
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0115
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0120
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0120
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0120
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0125
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0125
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0125
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0130
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0130
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0130
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0135
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0135
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0135
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0140
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0140
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0140
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0145
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0145
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0150
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0150
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0150
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0155
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0155
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0155
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0160
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0160
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0165
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0165
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0170
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0170
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0170
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0170
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0175
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0175
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0175
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0180
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0180
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0180
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0185
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0185
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0185
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0190
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0195
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0195
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0195
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0200
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0200
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0205
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0205
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0205
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0210
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0210
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0210
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0215
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0215
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0215
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0220
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0220
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0225
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0225
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0225
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0230
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0230
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0235
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0235
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0240
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0240
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0240
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0240
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0245
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0245
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0250
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0250
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0250
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0255
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0255
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0260
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0260
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0260
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0265
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0265
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0265
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0270
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0270
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0275
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0275
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0275
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0275
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0280
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0280
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0280
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0280
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0285
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0285
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0285
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0290
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0290
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0290
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0295
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0295
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0295
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0300
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0300
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0300
https://arxiv.org/abs/1912.01233
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0310
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0310
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0310
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0310
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0315
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0315
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0315
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0320
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0320
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0320
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0325
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0325
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0325
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0330
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0330
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0335
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0335
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0340
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0340
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0340
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0345
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0345
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0350
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0350
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0350
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0350
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0355
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0355
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0360
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0360
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0365
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0365
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0365


Nicu, I.C., 2018b. Is overgrazing really influencing soil erosion? Water 10 (8), 1077. 
Nicu, I.C., 2019. Natural risk assessment and mitigation of cultural heritage sites in North- 

eastern Romania (Valea Oii river basin). Area 51 (1), 142–154. 
Nicu, I.C., Asăndulesei, A., 2018. GIS-based evaluation of diagnostic areas in landslide 

susceptibility analysis of Bahluie River Basin (Moldavian Plateau, NE Romania). Are 
Neolithic sites in danger? Geomorphology 314, 27–41. 

Nicu, I.C., Mihu-Pintilie, A., Williamson, J., 2019. Gis-based and statistical approaches in 
archaeological predictive modelling (ne Romania). Sustainability 11 (21), 5969. 

Ohlmacher, G.C., 2007. Plan curvature and landslide probability in regions dominated by 
earth flows and earth slides. Eng. Geol. 91 (2), 117–134. 

Okamura, K., Fujisawa, A., Kondo, Y., Fujimoto, Y., Uozu, T., Ogawa, Y., Kaner, S., 
Mizoguchi, K., 2013. The great East Japan earthquake and cultural heritage: towards 
an archaeology of disaster. Antiquity 87 (335), 258–269. 

Ortiz, R., Ortiz, P., Martn, J.M., Vázquez, M.A., 2016. A new approach to the assessment 
of flooding and dampness hazards in cultural heritage, applied to the historic Centre 
of Seville (Spain). Sci. Total Environ. 551, 546–555. 

Pappalardo, G., Mineo, S., Monaco, C., 2016. Geotechnical characterization of limestones 
employed for the reconstruction of a UNESCO world heritage Baroque monument in 
southeastern Sicily (Italy). Eng. Geol. 212, 86–97. 

Paulson, E., 1942. An approximate normalization of the analysis of variance distribution. 
Ann. Math. Stat. 13 (2), 233–235. 

Pederson, J.L., Petersen, P.A., Dierker, J.L., 2006. Gullying and erosion control at ar
chaeological sites in grand canyon, Arizona. Earth Surface Processes and Landforms: 
The Journal of the British Geomorphological Research Group 31 (4), 507–525. 

Pourghasemi, H.R., Kariminejad, N., Amiri, M., Edalat, M., Zarafshar, M., Blaschke, T., 
Cerda, A., 2020. Assessing and mapping multi-hazard risk susceptibility using a 
machine learning technique. Sci. Rep. 10 (1), 1–11. 

Rahmati, O., Kornejady, A., Samadi, M., Deo, R.C., Conoscenti, C., Lombardo, L., Dayal, 
K., Taghizadeh-Mehrjardi, R., Pourghasemi, H.R., Kumar, S., et al., 2019. PMT: New 
analytical framework for automated evaluation of geo-environmental modelling ap
proaches. Sci. Total Environ. 664, 296–311. 

Reichenbach, P., Rossi, M., Malamud, B.D., Mihir, M., Guzzetti, F., 2018. A review of 
statistically–based landslide susceptibility models. Earth Sci. Rev. 180, 60–91. 

Romanescu, G., Nicu, I.C., 2014. Risk maps for gully erosion processes affecting ar
chaeological sites in moldavia, Romania. Z. Geomorphol. 58 (4), 509–523. 

Rossi, M., Witt, A., Guzzetti, F., Malamud, B.D., Peruccacci, S., 2010. Analysis of historical 
landslide time series in the Emilia–Romagna region, northern Italy. Earth Surf. 

Process. Landf. 35 (10), 1123–1137. 
Rue, H., Held, L., 2005. Gaussian Markov Random Fields: Theory and Applications. CRC 

Press. 
Rue, H., Martino, S., Chopin, N., 2009. Approximate Bayesian inference for latent 

Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. 
Ser. B 71 (2), 319–392. 

Rue, H., Riebler, A., Sørbye, S.H., Illian, J.B., Simpson, D.P., Lindgren, F.K., 2017. 
Bayesian computing with INLA: a review. Ann. Rev. Stat. Appl. 4, 395–421. 

Sevieri, G., Galasso, C., DAyala, D., De Jesus, R., Oreta, A., Grio, M.E.D.A., Ibabao, R., 
2020. A multi-hazard risk prioritization framework for cultural heritage assets. Nat. 
Hazards Earth Syst. Sci. 20 (5), 1391. 

Shahbazi, K., Salajagheh, A., Jafari, M., Ahmadi, H., Nazarisamani, A., Khosrowshahi, M., 
2017. Comparative assessment of gully erosion and sediment yield in different ran
gelands and agricultural areas in ghasr-e-shirin, Kermanshah, Iran. J. Rangel. Sci. 7 
(3), 296–306. 

Steger, S., Brenning, A., Bell, R., Glade, T., 2016. The propagation of inventory-based 
positional errors into statistical landslide susceptibility models. Nat. Hazards Earth 
Syst. Sci. 16 (12), 2729–2745. 

Tapete, D., Cigna, F., 2019. COSMO-SkyMed SAR for detection and monitoring of ar
chaeological and cultural heritage sites. Remote Sens. 11 (11), 1326. 

Tarragüel, A.A., Krol, B., Van Westen, C., 2012. Analysing the possible impact of land
slides and avalanches on cultural heritage in Upper Svaneti, Georgia. J. Cult. Herit. 
13 (4), 453–461. 

Team, R.C., 2000. R Language Definition. R foundation for statistical computing, Vienna, 
Austria. 

Topal, T., Doyuran, V., 1997. Engineering geological properties and durability assessment 
of the Cappadocian tuff. Eng. Geol. 47 (1–2), 175–187. 

Van Den Eeckhaut, M., Reichenbach, P., Guzzetti, F., Rossi, M., Poesen, J., 2009. 
Combined landslide inventory and susceptibility assessment based on different 
mapping units: an example from the Flemish Ardennes, Belgium. Nat. Hazards Earth 
Syst. Sci. 9 (2), 507–521. 

VanDine, D., Bovis, M., 2002. History and goals of Canadian debris flow research, a re
view. Nat. Hazards 26 (1), 67–80. 

Verstappen, H.T., 1983. Applied Geomorphology: Geomorphological Surveys for 
Environmental Development. 

Zevenbergen, L.W., Thorne, C.R., 1987. Quantitative analysis of land surface topography. 
Earth Surf. Process. Landf. 12 (1), 47–56.  

L. Lombardo, et al.   Engineering Geology 277 (2020) 105776

15

http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0370
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0375
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0375
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0380
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0380
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0380
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0385
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0385
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0390
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0390
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0395
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0395
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0395
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0400
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0400
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0400
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0405
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0405
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0405
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0410
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0410
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0415
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0415
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0415
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0420
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0420
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0420
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0425
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0425
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0425
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0425
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0430
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0430
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0435
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0435
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0440
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0440
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0440
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0445
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0445
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0450
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0450
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0450
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0455
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0455
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0460
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0460
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0460
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0465
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0465
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0465
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0465
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0470
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0470
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0470
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0475
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0475
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0480
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0480
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0480
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0485
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0485
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0490
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0490
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0495
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0495
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0495
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0495
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0500
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0500
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0505
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0505
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0510
http://refhub.elsevier.com/S0013-7952(20)30789-4/rf0510

	Spatial modeling of multi-hazard threat to cultural heritage sites
	Introduction
	Study area
	Material and methods
	Slope unit and presence/absence assignment
	Covariates
	Binomial generalized additive modeling with INLA

	Results
	Modeling performance
	Covariates' effects
	Fixed effects
	Random effects

	Multi-hazard susceptibility mapping
	Heritage sites at risk

	Discussions
	Conclusion
	Declaration of Competing Interest
	Acknowledgement
	mk:H1_19
	Land Use and Soil data
	Endangered heritage sites
	References




